

Aerospace-X

Life Cycle Assessment Rulebook

AEROSPACE-X

Version 1.0

List of Content

Glossary	5
1 Introduction	11
1.1 Purpose and scope of the rulebook	11
1.2 Life Cycle Assessment in the aerospace industry	11
2 Framework	13
2.1 Version	13
2.2 Terminology.....	13
2.3 Topics out of scope	13
2.4 Catena-X as the basis for the rulebook	13
2.5 Transition period.....	13
3 Existing methods and standards	14
3.1 Relationship.....	14
3.2 Hierarchy of conformity.....	14
4 Scope and system boundary	15
4.1 Introduction to LCA and PCF methodology.....	15
4.1.1 Definition of Carbon Footprint	16
4.1.2 Further impact categories	19
4.2 Functional and declared unit.....	20
4.3 System boundaries and completeness requirements.....	20
4.3.1 Cut-off rules	22
4.3.2 Initial screening analysis	22
4.4 LCI modelling framework and handling of multifunctional processes	22
4.5 Conducting the life cycle impact assessment.....	23
5 Principles for calculation of LCA and PCF	24
5.1 Accounting for LCA / PCF.....	24
5.1.1 Calculation	24
5.1.2 Allocation process.....	24
5.2 Additional principles.....	26

5.2.1	Transportation from supplier to customer	26
5.2.2	Accounting for waste treatment	28
5.2.3	Accounting for recycling	31
5.2.4	Accounting for emissions from electricity	31
5.2.5	Homogeneous parts	33
5.2.6	Accounting for chain of custody models	34
6	Data sources for inventory	38
6.1	Primary data	38
6.2	Secondary data	39
7	Required elements for LCA and PCF data exchange	41
7.1	Data model	41
7.2	Details on the required data elements	41
7.2.1	Time period	41
7.2.2	Temporal validity	41
7.2.3	Geography	41
7.2.4	Primary data share	42
7.2.5	Data quality rating	43
7.2.6	Reporting carbon offsets	46
Annex A – Catena X as the basis of this rulebook	47	
Annex B – Additional guidance on classifying waste vs co-product	51	
Annex C – Imprint	52	
Contributing partners	52	
Publisher	52	

List of Figures

Figure 1. Relationship of Standards	14
Figure 2: Overview of the specific components of the PCF	18
Figure 3. System boundaries for AX LCA.....	21
Figure 4: Multi-output allocation decision procedure	24
Figure 5. Definition of scopes.....	26
Figure 6. Distribution center supplier side	27
Figure 7. Distribution center customer side	27
Figure 8. System boundaries for transportation.....	28
Figure 9. Waste vs. co-product classification hierarchy	29
Figure 10. Waste generation during different stages of a product's life cycle.....	30
Figure 11. Overview of chain of custody models	35
Figure 12. Definition of PCF _{as}	42
Figure 13. Data sources for PCF calculation	43
Figure 14. Calculation of an aggregated DQR and PDS.....	45

List of Tables

Table 1: Explanation of the contributing factors of the biogenic uptake	17
Table 2. Transportation between supplier and customer.....	27
Table 3. Explanation chain of custody models	35
Table 4. Possible variances of primary and secondary data.....	38
Table 5: Data quality rating criteria.....	44
Table 6. Methodological Comparison with the CX-PCF Rulebook	47

Glossary

Term	Definition	Source
Aircraft	An aircraft is any machine that can derive support in the atmosphere from the reactions of the air other than the reactions of the air against the earth's surface.	ICAO, Annex 7, sixth edition
Allocation	Partitioning the input or output flows of a process or a product system between the product system under study and one or more other product systems.	ISO 14040:2021, 3.17
Attributable process	Those processes that consist of all service, material, and energy flows that become, make, and carry a product throughout its life cycle.	WBCSD Pathfinder
Biogenic carbon	Carbon derived from biomass.	ISO 14067:2018, 3.1.7.2
Carbon offsetting	Mechanism for compensating for a full PCF or a partial PCF through the prevention of the release of, reduction in, or removal of an amount of GHG emissions in a process outside the product system under study.	ISO 14067:2018, 3.1.1.7
Characterization factor	Factor derived from a characterization model, which is applied to convert an assigned life cycle inventory analysis result to the common unit of the category indicator.	ISO 14040:2021, 3.37
Climate change	Impact category in PEF method. All greenhouse gas emissions inventoried in the Resource Use and Emissions Profile are weighted in terms of their impact intensity relative to carbon dioxide, which is the reference substance for this category.	PEF 2013/179/EU, 6.1.2
Closed-loop recycling	In a closed loop, the secondary material from one product system is either reused in the same product system (real closed-loop) or used in another product system without changing the inherent technical properties of the material (quasi closed-loop).	ISO 5157:2023, 3.2.6.6
Corporate Sustainability Reporting (CSRD)	EU regulation requiring large and listed companies to disclose regular, audited, and standardized reports on social and environmental risks and impacts.	Directive (EU) 2022/2464
CO ₂ eq (carbon dioxide equivalent)	Unit for comparing the radiative forcing of a greenhouse gas to that of carbon dioxide.	ISO14067:2018, 3.1.2.2
Co-product	Any of two or more products coming from the same unit process or product system.	ISO 14040:2021, 3.10
Cradle-to-gate	System boundary that is applied for a partial LCA that includes a part of the product's life cycle. Cradle-to-gate represents the emissions and removals arising from raw material extraction, up to the point where the product leaves	Adapted from TFS PCF Guideline, ISO 14067:2018, 6.3.4.2, PEF 2013/179/EU

Term	Definition	Source
	the production site (the “gate”). This explicitly excludes the life cycle stages use and end-of-life.	
Cut-off criteria	Specification of the amount of material or energy flow or the level of significance of GHG emissions associated with a unit process or the product system, to be excluded from a PCF study.	ISO 14040:2021, 3.18
Data Quality Rating (DQR)	A quantitative or qualitative assessment of the reliability, completeness, consistency, and representativeness of data used in LCA or PCF studies. It supports transparency and comparability across supply chain emissions data.	Catena-X PCF Rulebook v3.0, PEF 2013/179/EU
Declared unit	Quantity of a product for use as a reference unit in the quantification of a partial footprint.	Adapted from ISO 14067:2018, 3.1.3.8
Direct emissions	Emissions from the processes that are owned or controlled by the reporting company.	Adapted from WBCSD Pathfinder
Downstream emissions	Indirect emissions that occur in the value chain following the processes owned or controlled by the reporting company.	Adapted from WBCSD Pathfinder
Functional unit	Quantified benefit of a product system for use as a comparison unit.	ISO 14040:2021, 3.20
Global warming potential (GWP)	Index, based on radiative properties of GHGs, measuring the radiative forcing following a pulse emission of a unit mass of a given GHG in the present-day atmosphere integrated over a chosen time horizon, relative to that of carbon dioxide (CO ₂).	ISO 14067:2018, 3.1.2.4
Greenhouse gas (GHG)	Gaseous constituent of the atmosphere, both natural and anthropogenic, that absorbs and emits radiation at specific wavelengths within the spectrum of infrared radiation emitted by the Earth's surface, the atmosphere, and clouds.	ISO 14067:2018, 3.1.2.1
Homogeneous product	A product that shares key characteristics, materials, and production processes with others in its group, differing only by parameters that systematically affect its environmental footprint.	Catena-X PCF Rulebook v3.0
Homogeneous part	A part produced using identical materials and manufacturing processes across instances, with negligible variation in characteristics affecting the footprint. Such parts can be treated as equivalent for LCA calculation.	Adapted from Catena-X PCF Rulebook v3.0
International Aerospace Environmental Group (IAEG)	A non-profit organization of global aerospace companies created to collaborate on and share innovative environmental solutions for the aerospace industry.	IAEG, “About IAEG”
ILCD Format	International Life Cycle Data System Format.	ILCD
Input	Product, material, or energy flow that enters a unit process.	ISO 14040:2021, 3.21

Term	Definition	Source
Land use	Human use or management of land within the relevant boundary.	ISO 14067:2018, 3.1.7.4
Life cycle	Consecutive and interlinked stages related to a product, from raw material acquisition or generation from natural resources to end-of-life treatment.	ISO 14040:2018, 3.1
Life Cycle Assessment (LCA)	Compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle.	ISO 14040:2018, 3.2
Life cycle emissions	The sum of emissions resulting from all stages of the life cycle of a product and within the specified boundaries of the product.	Adapted from WBCSD Pathfinder
Life cycle impact assessment	The phase of LCA that evaluates the magnitude and significance of environmental impacts based on the inventory of inputs and emissions. It translates resource use and emissions into impact indicators (e.g. climate change, acidification).	ISO 14040:2021, 3.4
Life cycle inventory analysis (LCI)	The phase of Life Cycle Assessment involving the compilation and quantification of inputs and outputs for a product throughout its life cycle.	ISO 14040:2021, 3.3
Material	Physical goods that are further processed (and not consumed) in manufacturing processes.	Adapted from WBCSD Pathfinder
Net zero CO ₂ emissions	Net zero CO ₂ emissions are achieved when anthropogenic CO ₂ emissions are balanced globally by anthropogenic CO ₂ removals over a specified period. Net zero CO ₂ emissions are also referred to as carbon neutrality.	IPCC glossary
Output	Product, material, or energy that leaves a unit process	ISO 14040:2021, 3.25
Packaging	Product to be used for the containment, protection, handling, delivery, storage, transport and presentation of goods, from raw materials to processed goods, from the producer to the user or consumer, including processor, assembler or other intermediary.	ISO 21067:2016 2.1.1
Paris Agreement	The Paris Agreement under the United Nations Framework Convention on Climate Change (UNFCCC) was adopted on December 2015 in Paris, France, at the 21st session of the Conference of the Parties (COP) to the UNFCCC. The agreement, adopted by 196 Parties to the UNFCCC, entered into force on November 4, 2016 and as of May 2018 had 195 Signatories and was ratified by 177 Parties. One of the goals of the Paris Agreement is "Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial	IPCC Glossary

Term	Definition	Source
	levels", recognizing that this would significantly reduce the risks and impacts of climate change. [...]	
Partial PCF	Sum of GHG emissions and GHG removals of one or more selected process(es) in a product system, expressed as carbon dioxide equivalents and based on the selected stages or processes within the life cycle.	ISO 14067:2018, 3.1.1.2
Primary data	Primary data is a quantified value of a process, or an activity obtained from a direct measurement or a calculation based on direct measurements. Primary data can include greenhouse gas emission factors and/or greenhouse gas activity data.	14067:2018, 3.1.6.1
Primary material	Virgin material.	PEF 2013/179/EU
Process	Set of interrelated or interacting activities that transforms inputs into outputs.	ISO 14040:2021, 3.11
Product	Any good (tangible product) or service (intangible product).	ISO 14040:2021, 3.9
Product carbon footprint (PCF)	Sum of GHG emissions and GHG removals in a product system, expressed as CO ₂ equivalents and based on a Life Cycle Assessment using the single impact category of climate change.	Adapted from ISO 14067:2018, 3.1.1.1
Product Carbon Footprint system model	Mathematical representation of a physical system and the incorporated processes to calculate a PCF.	Catena-X PCF Verification Guideline
Primary material	Virgin material.	PEF 2013/179/EU
Product category	Group of products that can fulfill equivalent functions.	ISO 14067:2018, 3.1.1.8
Product category rules (PCR)	A set of specific rules, requirements, and guidelines for calculating PCFs and conducting LCAs (among other things) and developing environmental declarations for one or more product categories according to EN ISO 14040:2006.	ISO 14067:2018, 3.1.1.9
Product Environmental Footprint (PEF)	PEF is a multi-criteria measure of the environmental performance of a good or service throughout its life cycle. Considering extraction of raw materials, through production and use, to final waste management.	Adapted from PEF 2013/179/EU
Product system	Collection of unit processes with elementary and product flows, performing one or more defined functions, and which models the life cycle of a product	Adapted from ISO 14040:2021, 3.28
Raw material	Primary or secondary material that is used to produce a product. Secondary material includes recycled material.	ISO 14040:2021, 3.15

Term	Definition	Source
Reference flow	Measure of the inputs to or outputs from processes in a given product system required to fulfil the function expressed by the functional unit.	ISO 14040:2021, 3.29
Renewable Energy	Energy from renewable sources' or 'renewable energy' means energy from renewable non-fossil sources, namely wind, solar (solar thermal and solar photovoltaic) and geothermal energy, ambient energy, tide, wave and other ocean energy, hydropower, biomass, landfill gas, sewage treatment plant gas, and biogas.	Renewable Energy Directive (2018/2001)
Representative product	The representative product can be a real or an averaged (non-existing) product. The averaged product should be calculated based on sales-weighted characteristics of all technologies/materials used in the company's production system.	Catena-X PCF Rulebook v3.0
Risk management	Plans, actions, strategies, or policies to reduce the likelihood and/or consequences of risks or to respond to consequences.	IPCC Glossary
Secondary data	Data which do not fulfil the requirements for primary data. Secondary data can include data from databases and published literature, default emission factors from national inventories, calculated data estimates or other representative data, validated by competent authorities.	ISO 14067:2018, 3.1.6.3
Secondary material	Secondary material includes reused or recycled material.	PEF 2013/179/EU
Sectoral guideline	LCA reporting rules issued by industry associations or initiatives as guidance for their members.	
Supplier gate	The supplier's factory (out-bound) gate, through which the product leaves the production site and is ready for shipment to the customer.	Catena-X PCF Rulebook v3.0
Supply chain	Those involved, through upstream and downstream linkages, in processes and activities relating to the provision of products to the user.	ISO 14067:2018, 3.1.5.2
Sustainability	A dynamic process that guarantees the persistence of natural and human systems in an equitable manner.	IPCC Glossary
System boundary	Boundary based on a set of criteria representing which unit processes are a part of the system under study.	ISO 14040:2021, 3.32
Transport / distribution packaging	Packaging designed to contain one or more articles or packages, or bulk material, for the purposes of transport, handling and/or distribution.	ISO 21067:2016, 2.2.6
Unit process	Smallest element considered in the life cycle inventory analysis for which input, and output data are quantified.	ISO 14040:2021, 3.34

Term	Definition	Source
Upstream emissions	Indirect emissions that occur in the value chain prior to the processes owned or controlled by the reporting company. All upstream transportation emissions are also included as part of upstream emissions.	Adapted from WBCSD Pathfinder
Use stage	That part of the life cycle of a product that occurs between the transfer of the product to the consumer and the end-of-life of the product.	Adapted from WBCSD Pathfinder
Value chain	All the upstream and downstream activities associated with the product system.	Catena-X PCF Rulebook v3.0
Waste	Materials, products, or emissions without economic value that the holder intends or is required to dispose of.	Adapted from ISO 14040:2021, 3.35

1 Introduction

1.1 Purpose and scope of the rulebook

The Aerospace-X (AX) Life Cycle Assessment (LCA) rulebook is a comprehensive document outlining specific guidelines for the assessment of environmental impacts in the aerospace industry using the method of LCA. Providing a standardized common framework for conducting LCAs, reducing variability and improving comparability across products is the main aim of the rulebook. Additionally, enhancing data quality by establishing clear data quality requirements to ensure reliable and accurate calculations is also the purpose of the rulebook. This establishes a standard for sharing high-quality and consistent LCA data between the supply chain partners enabling a collaborative effort to reduce environmental impacts.

This rulebook defines rules specific to the aerospace supply chain with the aim of improving clarity on topics mentioned in the ISO 14040/44 and ISO 14067 standards. Since the aerospace supply chain is complex and spread across multiple sectors, the LCA methodology is closely aligned with broader guidelines such as Catena-X PCF Rulebook, WBCSD Pathfinder Framework, GHG Protocol Product Standard and IAEG Aerospace LCA Framework allowing for interoperability.^{1,2,3,4}

1.2 Life Cycle Assessment in the aerospace industry

The aerospace sector is an emission-intensive industry, contributing approximately 4% of direct greenhouse gas (GHG) emissions in the EU in 2022 and experiencing rapid growth.⁵ This increase is driven by a growing demand for mobility. In response, the EU Green Deal has set a target of becoming climate neutral by 2050. Achieving this goal will require significant efforts from the aerospace industry to reduce its emissions. It is therefore imperative for the aerospace industry to calculate its emissions in order to identify opportunities for improvement and minimise its environmental impact to achieve climate targets.

The ISO 14040 and 14044 standards are widely used as the basis for calculating LCAs and are also forming the basis for this rulebook. Given the significance of carbon neutrality, particular attention is paid to the impact category climate change, which in turn enables the calculation of the Product Carbon Footprints (PCF) at product level. The foundation for this approach is the ISO 14067 standard.

¹ Catena-X Automotive Network. *Catena-X Product Carbon Footprint Rulebook (Version 3.0)*. August 2024. [CX-NFR-PCF-Rulebook_v.3.0-04874a80a6d27511df06e07ae3049278.pdf](https://catenax.org/catenax-product-carbon-footprint-rulebook-v3.0-04874a80a6d27511df06e07ae3049278.pdf)

² World Business Council for Sustainable Development (WBCSD). *Pathfinder Framework for Product Life Cycle Emissions Accounting and Exchange (Version 2.0)*. 2023. [Pathfinder Framework Version 2.0 | WBCSD](https://wbcisd.org/pathfinder-framework-version-2.0/)

³ Greenhouse Gas Protocol. *Product Life Cycle Accounting and Reporting Standard*. World Resources Institute (WRI) and World Business Council for Sustainable Development (WBCSD), 2011. [Product-Life-Cycle-Accounting-Reporting-Standard_041613.pdf](https://ghgprotocol.org/sites/default/files/2019-06/PLCARS_041613.pdf)

⁴ International Aerospace Environmental Group (IAEG). *Aerospace Life Cycle Assessment (LCA) Framework for Improved Connectivity (Version 01)*. April 2025. [wg12-lca-frmwk-document-v1_final.pdf](https://iaeg.org/wp-content/uploads/2025/04/wg12-lca-frmwk-document-v1_final.pdf)

⁵ European Commission. (2025). *Reducing emissions from aviation*. Climate Action. <https://climate.ec.europa.eu/eu-action/transport-decarbonisation/reducing-emissions-aviation>

To date, the calculation of LCAs / PCFs in the aerospace industry has tended to be implemented at company level as part of compliance with the Corporate Sustainability Reporting Directive (CSRD). Due to large data gaps in the supply chain, it is difficult to calculate the environmental impact at product level. Various approaches exist for LCA and PCF, however they leave room for interpretation, which leads to intransparency and differences in calculation and eventually to wrong conclusions. The rulebook aims to set an industry wide approach.

In order to ensure a consistent calculation across the entire value chain, a standardized procedure must be implemented throughout all stakeholders in order to determine the environmental footprint on product level. The Catena-X (CX) PCF Rulebook already provides a sound basis for calculating PCFs. This provides the basis for the aerospace industry, as suppliers may deliver to both the aerospace and automotive industry. In the AX LCA Rulebook, these principles are to be further developed in order to create the basis for carrying out a holistic assessment of the environmental impact.

2 Framework

2.1 Version

This document represents version 1.0 of the AX LCA Rulebook, released in 12/2025. The rulebook will be jointly developed further in the future and LCAs should be conducted according to the most current version of this rulebook.

2.2 Terminology

Clarification on ISO terminology used in the rulebook:

- Shall: Indicates mandatory requirements for compliance with the AX LCA rulebook.
- Should: Indicates a recommendation. Any deviations must be justified and clearly documented by the party conducting the study.
- May: Indicates an option that is allowed.
- Can: Indicates that something is possible, such as an organization or individual having the capability to do something.

Further definitions of frequently used terms can be found in the Glossary.

2.3 Topics out of scope

The AX LCA Rulebook is focused on the production phase of aircrafts, covering PCF and LCA, accounting from cradle-to-(factory)gate for aircraft, products and materials. Recycling is currently only included through the use of secondary materials (section 5.2.3). Comprehensive recycling strategies require additional methods, which are currently beyond the scope of this rulebook and will be considered in later versions.

In this first version of the AX LCA rulebook, only one impact category is considered, which is climate change. The category indicator is the global warming potential (GWP), expressed in CO₂ equivalents. This is equivalent to calculating a PCF. However, it is intended that further impact categories will be added to the AX LCA rulebook in order to reflect a comprehensive set of environmental issues related to the product system being studied (see chapter 4.1).

2.4 Catena-X as the basis for the rulebook

The AX LCA rulebook uses the CX PCF Version 4 rulebook as a foundation, adapting its structure and methods to suit the needs of the aviation industry. By building on an existing, recognized framework, it helps streamline methods and clarify expectations for data handling and reporting while allowing for sector-specific adjustments where necessary. An explanation of the application of the CX PCF rulebook and the specific adjustments made for the aerospace context can be found in the annex.

2.5 Transition period

This document foresees a transition period after publication of this version to facilitate the initial implementation of the rulebook in the industry. Sections marked as “after the transition period” are voluntary within the transition period. After the transition period, these sections are planned to substitute the sections marked as “within transition period” and will thus become mandatory. The transition period will last until end of 2027.

3 Existing methods and standards

3.1 Relationship

The AX LCA rulebook is based on the CX PCF rulebook, the IAEG LCA Framework, the LCA standards ISO 14040/44 and the PCF standard ISO 14067 (Figure 1).

Figure 1. Relationship of Standards

The AX LCA rulebook further specifies existing standards and, if applicable, refers to sectoral guidance and product category rules for LCA in aerospace supply chains. The AX LCA rulebook is closely aligned with the IAEG Aerospace LCA Framework, the GHG Protocol Standard and the WBCSD Pathfinder Framework. Further alignment with sector initiatives such as Together for Sustainability (TfS), worldsteel, International Aluminum Institute (IAI), European Aluminum, Aluminum Stewardship Initiative needs to be initiated.

3.2 Hierarchy of conformity

Existing rules shall be applied according to the following hierarchy:

1. The LCA shall be conducted in accordance with ISO 14040 and ISO 14044.
2. Aerospace supply chain-specific requirements shall be applied as defined in this document.
3. Sector-specific and product-specific rules should be applied if prescribed within this rulebook.

Eventually, additional sector-specific or product-specific guidance will be added.

Information on the applied methods or standards shall be shared downstream as part of the LCA Data Model (Section 7.1) to create greater transparency and enable comparability.

4 Scope and system boundary

The AX rules are based on the attributional LCA approach. This approach seeks to determine the environmental impacts associated with a product throughout its life cycle. ISO 14040 and ISO 14044 build a structured methodology for assessing the environmental impacts of products and processes over their complete life cycle. However, these standards are designed for broad applicability and do not address the specific requirements of aerospace systems.⁶ This section presents AX's sector-specific guidance on defining system boundaries and scope, addressing life cycle stages, and selecting impact categories and calculation methods to promote methodological consistency within the aerospace industry.

4.1 Introduction to LCA and PCF methodology

LCA, standardized under ISO 14040 and ISO 14044, evaluates inputs, outputs and environmental impacts associated with a product, process, or service over its life cycle from raw material acquisition through production, use, end-of-life treatment, recycling and final disposal (i.e. cradle-to-grave). As defined in 14040 an LCA consists of four phases: goal and scope definition, life cycle inventory (LCI), life cycle impact assessment (LCIA) and interpretation. Depending on the objective of the study, only individual phases of the life cycle may be considered (i.e. cradle-to-gate, gate-to-gate). The selection of impact categories in an LCA reflects a comprehensive set of environmental issues related to the product system being studied, including climate change, land use, water consumption, and resource depletion (ISO 14044). LCA involves compiling a Life Cycle Inventory (LCI), which quantifies all physical flows, inputs and outputs of materials, energy, and emissions. These inventory results are then used in the Life Cycle Impact Assessment (LCIA), where environmental impacts are calculated using characterization models. This provides the basis for interpreting trade-offs and informing design decisions aimed at sustainability and circularity.

In contrast, the PCF focuses exclusively on greenhouse gas (GHG) emissions, covering gases such as carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), and others as defined in ISO 14067 and the GHG Protocol. The PCF is typically expressed in kg CO₂ equivalents and is often treated as equivalent to the climate change impact category in LCIA. Although often associated with radiative forcing, GHGs like CO₂ can have broader environmental interactions, including roles in biogenic carbon cycles. PCF enables consistent product-level comparisons and supports carbon labeling. However, it excludes non-climate-related environmental impacts, making it a narrower, GHG-specific subset of LCA.

LCA is a relative approach, which is structured around a functional unit. This functional unit defines what is being studied. All inputs and outputs in the LCI and consequently the LCIA and subsequent analysis are related to the functional unit.

It is imperative that the goal and scope of an LCA are clearly defined. Aspects such as the functional unit, system boundaries, allocation procedures, LCIA methodology and data requirements are addressed hereafter.

⁶ IAEG (2025) - Aerospace Life Cycle Assessment: Framework for improved connectivity, 15.

Once the goal and scope of an LCA are defined, all (relevant) inputs and outputs for a product throughout its life cycle are being compiled and quantified. This is called the life cycle inventory analysis. The data that is collected includes:

- energy inputs, raw material inputs, ancillary inputs, other physical inputs,
- products, co-products and waste,
- releases to air, water and soil and
- other environmental aspects.

The next step is to evaluate the extent and significance of the potential environmental impacts of all inputs and outputs and for the product in total. This is done in the LCIA, where physical flows (LCI results) are translated into potential impacts (classified in impact categories) on the environment using scientifically derived characterization factors specific to each category.

LCA considers several attributes or aspects of the natural environment, human health and resources. By considering several attributes and aspects within one study, potential trade-offs can be identified and assessed. The selection of impact categories and methodology for impact assessment is part of the scope definition and based on the goal defined for an LCA. Often, predefined sets of impact categories, category indicators and characterization models are used, for example the EF 3.0 or ReCiPe 2016 methodology.

4.1.1 Definition of Carbon Footprint

The PCF is the sum of GHG emissions in a product system, expressed as CO₂ equivalents and based on a LCA using the single impact category of climate change (ISO 14067).

The GHGs that shall be accounted for are identified within the GHG Protocol Standard entitled “Required Greenhouse Gases in Inventories: Accounting and Reporting Standard Amendment”. The list includes carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorinated compounds, sulfur hexafluoride (SF₆), nitrogen trifluoride (NF₃), perfluorocarbons (PFCs), fluorinated ethers (HFEs), perfluoropolyethers (e.g., PFPEs), chlorofluorocarbon (CFCs) and hydrochlorofluorocarbon (HCFCs). To ensure the latest required GHGs, please refer to the latest IPCC Assessment Report (AR).

The 100-year GWP characterization factors (GWP100y) according to the Intergovernmental Panel on Climate Change (IPCC) shall be used in the PCF calculations, based on the IPCC’s AR6. These factors include the climate carbon response for non-CO₂ gases, i.e., carbon feedbacks and chemical effects. The AR6 characterization factors for the substances that are not listed in Table 7.15 of the IPCC AR6⁷ shall be extracted from Table 7.SM.7 in Section 7 Supplementary Materials of the AR6 Climate Change 2021 Physical Science Basis⁸. Once a new AR has been published, its characterization factors shall be used. If the characterization factors cannot be updated immediately, a transition period of two years after the publication of a new IPCC AR is granted after which the characterization factors shall be updated. If secondary data used is based on outdated characterization factors, this must be clearly stated and alternative datasets that use the latest characterization factors should be prioritised.

⁷ https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07.pdf

⁸ https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf

Various GHG accounting frameworks apply different approaches for calculating biogenic and non-biogenic carbon. For example, ISO 14067 includes both types in the overall value but requires separate reporting of biogenic carbon. The PEF method demands reporting of the total carbon value along with a distinction between biogenic, non-biogenic and land use / land use change. In contrast, the GHG Protocol standard explicitly requires separate accounting of biogenic and non-biogenic carbon. Figure 2 illustrates the different PCF components and in Table 1 the individual contributions (labeled as positions A–H) are described (aligned to CX).

For PCF reporting in accordance with the Aerospace-X Rulebook, during the transition phase both the total GWP including biogenic CO₂ uptake (T1 in Table 1) and the total GWP excluding biogenic CO₂ uptake (T2 in Table 1) shall be reported. The total GWP including biogenic CO₂ uptake shall be used for the calculation of the primary data share, the data quality rating and the verification share.

The total GWP including biogenic CO₂ uptake is calculated as the sum of the emission components T1 = A + C + D + E + F + G + H, whereas the PCF excluding biogenic CO₂ uptake corresponds to the sum T2 = A + C + E + F + G + H. In addition to the total PCF, the separate emission values shall be reported:

Table 1: Explanation of the contributing factors of the biogenic uptake

Emission	Conditional	Description
GWP total incl. biogenic CO ₂ uptake	Shall	<p>Position T1 = A+C+D (negative contribution) +E+F+G (negative contribution) +H.</p> <p>Letters refer to individual emission categories below.</p> <p>This also refers to the -1/+1 Approach.</p> <p>"GWP total incl. biogenic uptake" may be set equal to "GWP total excl. biogenic uptake" if the product has no or a neglectable biogenic carbon content. General cut-off criteria apply as criteria for negligibility.</p>
GWP total excl. biogenic uptake	Shall	<p>Position T2 = A+C+E+F+G (negative contribution) +H. Letters refer to individual emission categories below.</p> <p>This also refers to the 0/0 Approach.</p>
GWP fossil	Should	<p>Position A: includes all fossil emissions, including industrial processes, stationary/mobile combustion and fugitive emissions. This position includes the fossil emissions associated to land management (A1: "GWP fossil land management") which is not part of the AX LCA data model but of PACT and TFS.</p>
GWP biogenic emissions other than CO ₂	Should	<p>Position C: non-CO₂ biogenic emissions related to agricultural activities. It encompasses emissions as described in PACT v3.0: CH₄ emissions from livestock and manure; CH₄ emissions from biomass burning and fires; CH₄ emissions from rice production; CH₄ emissions from transformation and degradation (e.g., combustion, digestion, composting, landfilling). It must be noted that N₂O from land management activities are not included in this position and are reported in position A and A1 (as a detail).</p>
GWP biogenic CO ₂ - uptake (biogenic CO ₂ contained in the product)	Should	<p>Position D (negative contribution): The CO₂ which was absorbed from the atmosphere during the growth period of the biomass and of which the C is now bound in the product as biogenic carbon content.</p>

GWP land use change (LUC, excluding iLUC)	Should	Position E: Emissions from LUC constitute a release of GHG emissions due to a change in land use from one land use category or subcategory to another, such as primary forest to agricultural land, or peat land (type of wetland) to cropland. This position encompasses dLUC (direct land use change) emissions. If that data is not available, companies should account for LUC using statistical land-use change (sLUC) emissions. iLUC emissions are excluded. Refer to PACT v3.0 for details.
GWP Land Management CO ₂ Emissions	Should	Position F: carbon stock losses occurring within the same land use category or subcategory due to agricultural practices such as tillage, field preparations, pruning and harvest. Land Management CO ₂ emissions measures biogenic CO ₂ emissions from a net loss in carbon stock within one land use category or subcategory. This includes impact on the land-carbon pools, including above and below-ground biomass, dead organic matter, and soil carbon pools. If the carbon stock increases within the same land use category and the conditions to report removals are met, this may be calculated as a Land management CO ₂ removal (position G). Refer to PACT v3.0 for details.
GWP Land Management CO ₂ Removals	Should	Position G (negative contribution): Land management removals are net CO ₂ removals resulting from net increases to carbon stored in land-based carbon pools (biomass, dead organic matter and soil carbon pools) due to ongoing land management practices. This extra net carbon stock is gained over the crop rotation or crop cultivation cycle (e.g., multiple years for perennial crops and multiple years in a rotation that includes annual crops). Refer to PACT v3.0 for details.
GWP Aviation emissions (upstream)	Should	Position H: Aviation emissions which have occurred in distribution stages upstream.

Removals in the PCF shall not include any measures not related to the production system usually referred to as carbon offsets (see Section 7.2.6).

The biogenic carbon content and total carbon content of products shall be reported separately.

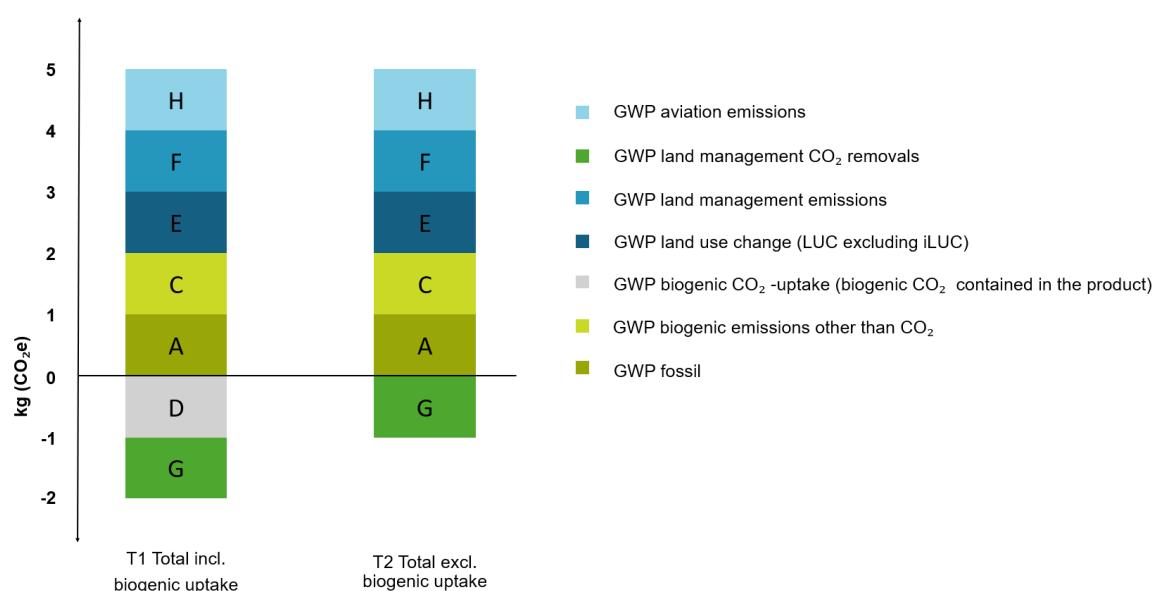


Figure 2: Overview of the specific components of the PCF

Uptake of atmospheric CO₂ shall be assigned with a characterization factor of -1 kg CO₂eq per kg CO₂; the emission of CO₂ shall be assigned with a factor of 1 kg CO₂eq per kg CO₂. If

plants absorb atmospheric CO₂, the CO₂ shall be considered in the separate emission value D (GWP biogenic CO₂-uptake) if documented.

4.1.2 Further impact categories

The guidance in this section is based on the recommendations of the IAEG Aerospace LCA Framework.⁹ It reflects sector-specific consensus on relevant impact categories, derived from industry practice, stakeholder consultation, and alignment with broader environmental goals.

At the outset of a LCA, the question frequently arises whether to assess a broad spectrum of environmental impact categories or to concentrate on a selected subset. The recommended methodological approach is to begin with a comprehensive inventory of relevant impact categories. This ensures that the assessment is robust, aligns with potential regulatory requirements, and addresses a wide range of stakeholder interests.

Subsequent refinement to focus on the most significant impact categories – based on relevance, magnitude, and decision-making context – can improve the clarity, efficiency, and interpretability of the study. Such prioritization supports targeted environmental management and enhances the practical utility of the LCA results.

While the final selection of impact categories should be consistent with the defined goal and scope of the study, the following categories are recommended as a baseline set for aerospace-related LCAs in alignment with IAEG LCA framework. These categories were identified through a review of established LCA methodologies and direct input from aerospace companies, and they represent the most frequently relevant environmental aspects in the sector:

1. Climate Change: GHG emission reduction is a clear priority of the aerospace industry in support of the IATA commitment to Fly Net Zero by 2050.
2. Resource Use (minerals, metals, water, and fossils): better understanding of resource use impacts can be used to build aerospace supply chains that are more sustainable and resilient and reduce the amount of natural resources used.
3. Photochemical Ozone Formation (Summer Smog): focus on this impact will help drive continued improvement of air quality at and around airports and reduce environmental impacts for those communities.
4. Acidification: reduction of sulfur oxides (SO_x) and nitrous oxides (NO_x) are an important part of overall aerospace and airline impact reduction.
5. Particulate matter: reduction in particulate matter emissions are an important part of overall aerospace and airline impact reduction both from an air quality and a cloud formation perspective.

It is important to note that the relevance of individual impact categories may vary depending on the specific aerospace product system under study and the LCA's intended application. For instance, assessments focusing on alternative fuel blends may also require consideration of land use, water consumption, or biodiversity impacts to ensure environmental trade-offs are fully captured.

⁹ IAEG (2025) - Aerospace Life Cycle Assessment: Framework for improved connectivity, 36-37.

Initially, the impact category climate change shall be assessed (during the transition period). After the transition period, the other impact categories shall be taken into account in accordance with the IAEG recommendation.

4.2 Functional and declared unit

The PCF / LCA shall be assessed for a functional unit (FU). The functional unit represents a quantified expression of the function(s) delivered by the system under study. It acts as the reference basis for all input and output data within the LCA. This unit captures and defines the essential product characteristics – such as performance, appearance, durability, and maintainability – that are required for a valid comparison, based on specifications driven by customer or market demands. Its role is fundamental, as it enables the consistent and meaningful comparison of alternative products or systems by standardizing the basis of assessment.¹⁰ (Example: The functional unit for an aircraft can be defined as “Transport of X passenger / Y kg payload over a distance of Z nautical miles.”)

In cases where a functional unit cannot be meaningfully defined – especially in partial PCF / LCA studies or for intermediate products – a declared unit shall be used as the reference unit for quantifying the environmental impact of the product. In aerospace applications, the declared unit is especially appropriate for intermediate products whose full function and lifecycle context may not be visible to the supplier (e.g. coatings, fasteners, or semi-finished materials). In such cases, mass- or count-based declared units allow consistent LCA data transfer across stakeholders. Possible declared units are piece, kilogram, liter, cubic meter, kilowatt hour, megajoule, ton kilometer, square meter, hour and megabit second.

Additionally, a functional aspect is suggested to be added to the declared unit by the recipient depending on the comparison to be done.

- For countable products (i.e. a component or part) the declared unit shall be 1 piece as described in the part description including a defined weight and the part ID.
- For materials, i.e., mass products or commodities, the declared unit shall be 1 kg of products, regardless of its state (solid, liquid, gas), as its specific density is considered.
- If packaging is included, the declared unit is 1 kg or 1 piece of unpackaged product at the factory gate. The PCF however includes the PCF contribution of packaging.

A transformation of the declared unit shall be feasible using a functional conversion factor, this factor may consider the following aspects:

- Lifetime of the product
- Mechanical or thermal properties

4.3 System boundaries and completeness requirements

The definition of the system boundary is the basis to determine which unit processes are included within the LCA study. The life cycle of a product can be divided into the following five stages: (1) raw material extraction, (2) production, (3) distribution and storage, (4) use of product and (5) end-of-life. There are different cradle-to-x approaches depending on the

¹⁰ IAEG (2025) - Aerospace Life Cycle Assessment: Framework for improved connectivity, 18-19.

phases that lie within the observation scope. The AX LCA scope of version 0.1 consists of the raw material extraction, production and distribution and storage phases, which corresponds to the cradle-to-gate approach (Figure 3). This partial LCA can be exchanged along the entire production supply chain, resulting in the LCA of the production of the final product. In future versions of the AX LCA rulebook, the entire life cycle, including the usage phase and end of life, will also be considered.

The cradle-to-gate approach of this regulation includes all attributable upstream emissions and those directly associated with production, including all transport activities. Life cycle emissions not included in this regulation are any downstream emissions associated with the use of the product and its end of life.

Figure 3. System boundaries for AX LCA

For a better overview and transparency, companies shall list all attributable processes of their product that are part of the cradle-to-gate scope.

The AX LCA rulebook boundaries are therefore:

- Raw material extraction, raw material sourcing
- Production of materials and semi-finished products
- Production of aircraft parts
- Packaging of aircraft parts, including all operations required for performing packaging
- Treatment and disposal of production waste (incl. packaging waste)
- Logistics (including internal logistics and transport packaging, refer to section 5.2.1)
- Quality control in production
- IT for process and manufacturing control

Processes that lie within the system boundaries but have no relevant influence are excluded based on the cut-off rules described in section 4.3.1. In general, resource use and emissions that are not directly associated with the production system relevant to the product are excluded from the system boundaries. These include, among others:

- Employee commuting and work travel
- Research and development, administration, or sales processes
- Emissions from construction or dismantling of capital good (such as buildings, manufacturing equipment or any other infrastructure for transport, media or energy distribution and energy generation, within or outside the control of the company)

4.3.1 Cut-off rules

All materials and processes included in the product system need to be considered if feasible. Alternatively for complex systems, the most significant environmental impacts can be considered. This means that processes contributing less than 3% to the total environmental impact may be excluded.

4.3.2 Initial screening analysis

An initial screening of the LCI of (a) representative product(s) / service(s) shall be performed by the company calculating LCAs, referred to as the screening step. The screening pursues the goal to point out needs of action in terms of data collection activities or activities to improve data quality. A screening shall include the LCIA for the impact category Global Warming Potential (during the first transition period) and allow further refinement of the PCF system model of the product(s) / service(s) in scope in an iterative manner as more information becomes available. Within screening, no exemption is allowed, and readily available primary or secondary data may be used, fulfilling the data quality requirements to the extent possible. To estimate 97% coverage, we assume that the PCF data received from suppliers and the emission factors represent the full upstream supply chain. This is necessary because it's not possible to directly measure or verify the actual coverage of all upstream activities. Once the screening is performed, the initial scope settings may be refined. The representative product approach and a description of the excluded attributable processes shall be documented.

The screening analysis shall be updated at the end of the transition period of the AX LCA rulebook, so that possible changes of significant activities can be considered, especially for further impact categories.

4.4 LCI modelling framework and handling of multifunctional processes

Once the LCA scope and functional / declared unit have been defined, a system model should be constructed. The model for the product, component or system should contain:

- A Bill of Materials (BoM) or equivalent input data.
- A flow diagram that defines the system boundary and identifies all actors.
- Complete set of assumptions for transportation.

Modelling should be set at a level that permits meaningful comparison among products performing the same function. The model applied in an aerospace LCA should:

- Quantify every impact category and pinpoint the most relevant ones, along with the applicable life-cycle stages, processes, and direct elementary flows.
- Facilitate comparison between products that share the same function or application.
- Calculate benchmarks against a representative product or system when available.
- Define performance classes, if appropriate.

The LCA should describe every step taken to define the representative product or system model(s) in the study and record the information obtained, while safeguarding confidential data. Any information collected during the LCA that is deemed confidential (due to competitive business considerations, intellectual property rights, or other legal constraints) shall not be disclosed publicly under any circumstances. Developed models should be presented to and discussed with the relevant stakeholders.¹¹

If any process within the system model produces more than one major output (i.e., a multifunctional process where co-products are produced), system expansion or the allocation hierarchy defined in Section 5.1.2 shall be followed.

4.5 Conducting the life cycle impact assessment

In the LCIA phase, the data collected in the LCI is translated into environmental impacts. By classification each emission and resource flow from the inventory is assigned to its corresponding impact category. Characterization then converts these flows into comparable impact results using scientifically derived characterization factors

For the aerospace sector, the LCIA phase should apply a standardized, robust method to ensure comparability and regulatory alignment. Based on IAEG LCA Aerospace Framework, the Environmental Footprint (EF) LCIA method is recommended with a specific focus on the impact categories described in section 4.1.2.

¹¹ IAEG (2025) - Aerospace Life Cycle Assessment: Framework for improved connectivity, 24-25.

5 Principles for calculation of LCA and PCF

5.1 Accounting for LCA / PCF

System boundaries shall include all attributable processes that comply with the cut-off criteria (Section 4.3.1).

5.1.1 Calculation

To be included in the supplementary LCA guidance document.

5.1.2 Allocation process

Allocation occurs when a process or system generates multiple outputs (co-products), requiring the distribution of environmental impacts among them. Allocation shall be avoided whenever possible. If allocation cannot be avoided, follow the approach in Figure 4. This approach follows the hierarchy from IAEG Aerospace LCA Framework and is adapted from CX PCF Rulebook.

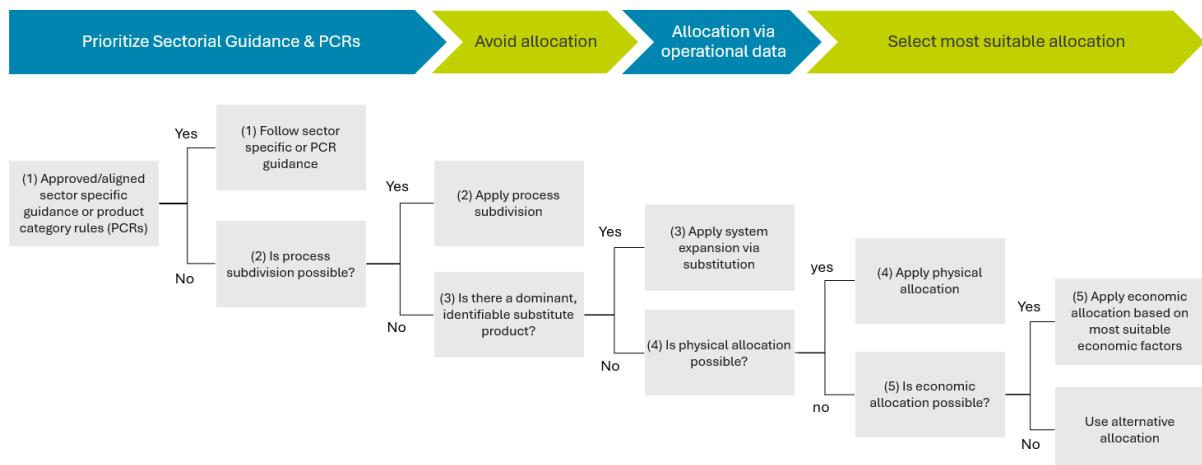


Figure 4: Multi-output allocation decision procedure

- (1) If sector-specific guidance or a PCR exists, a legal entity producing a product belonging to a category in this sector shall follow this guidance or PCR to identify the adequate multi-output allocation approach. The prerequisite for the application of the sector-specific or PCR is an alignment and acceptance via the AX governance process or an initiative representing an industry sector and authoring a sector guidance which is accepted by AX as drop-in standard. Any remaining differences or contradictions to the AX LCA Rulebook in an accepted sector guidance or PCR will be handled via the governance process and, if required, additional guidance will be provided.
- (2) If no approved sectoral guidance/PCR is available and subdivision is possible, subdivision shall be applied. Subdivision refers to disaggregation of multifunctional processes / facilities to isolate input flows directly associated with each process or facility output.

(3) If subdivision can not be applied, but a dominant substitute product can be identified, expanding the product system to include additional functions related to co-products shall be applied. System expansion via substitution shall only be used in accordance with:

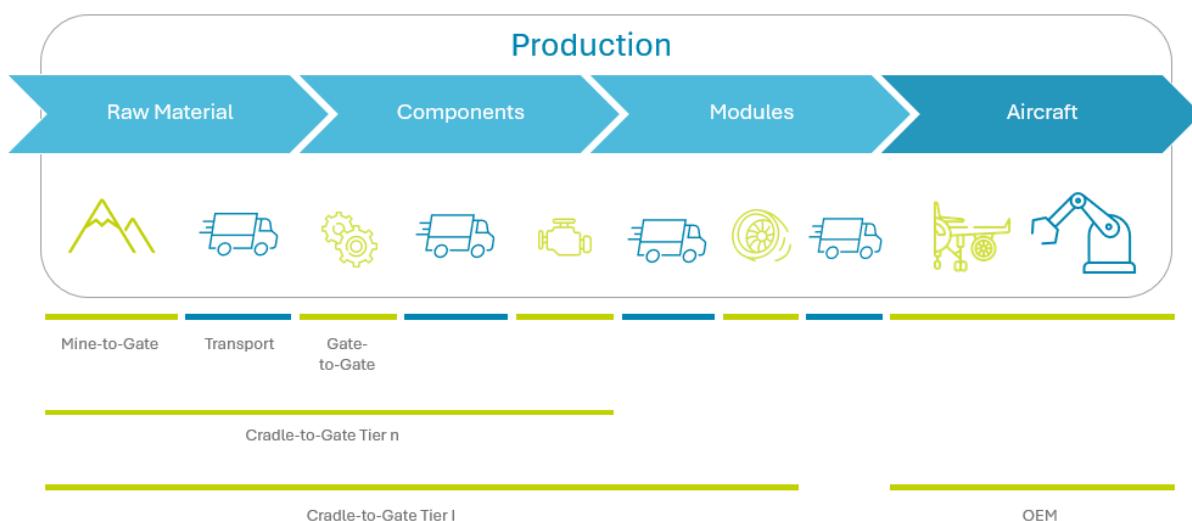
System expansion via substitution should only be used if there is a dominant, identifiable displaced product and production path for the displaced product based on sector consensus. Dominant means that the production process is the main process on the market. For the emissions data, primary data shall be used and secondary data may only be used if primary data isn't available. In case of secondary data, the requirements in section 6.2 shall apply to guarantee that the dataset and source for calculating system expansion credits are compliant. If no sector consensus exists, following requirements shall be fulfilled:

- The production of the co-product is an integral part of the production process.
- The alternative dataset must be representative of the dominant production route and comply with the requirements of section 6.2.
- A clear description of the process for selecting the alternative product substituted by the co-product shall be internally documented.

Double counting shall be avoided. No market-mediated effects shall be applied, as the attributional LCA approach shall be used (see 4.1). The customer of the co-product can be provided with a PCF of the co-product. This enables the customer of the co-product to account for the co-product's correct footprint and prevents double counting of credits.

(4) If allocation can't be avoided, subdivision isn't possible, no dominant substitute product can be identified, allocation via physical allocation shall be applied. This approach shall be based on a physical or process-related parameter that reliably represents how inputs and emissions are shared among co-products. The physical relationships to choose from are:

- produced masses,
- produced pieces,
- contained exergy,
- contained energy.


(5) If physical allocation cannot be applied, economic allocation should be performed. Therefore, companies shall apply an economic allocation using economic value as criterion to partition inputs and outputs between the studied co-product(s). The chosen factor shall always be averaged over the last multiple years to smooth out fluctuations. A period of 3-5 years is recommended, and a systematic approach should be internally documented for materials with high fluctuations of the selected factor of price / cost.

- 1) Global market price (global market prices, usually only available for commodities).
- 2) Regional market price.
- 3) Other economic allocation factors (i.e., production costs or sales price)

5.2 Additional principles

5.2.1 Transportation from supplier to customer

In addition to emissions from production and manufacturing, there are also emissions from the transportation of products. All upstream transportation processes shall be included in the calculation of environmental impacts, i.e. included in the cradle-to-gate system boundary. The same applies to in-house logistics unless cut-off rules apply (see Figure 5). This section deals with transportation from a supplier to its customer. The cradle-to-gate boundaries end at the suppliers' outbound gates. This boundary applies independently from the responsibilities in economic or operative terms for transportation processes (Figure 5).

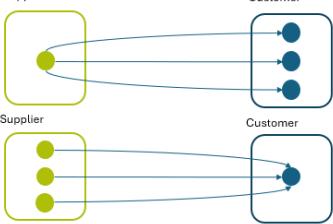
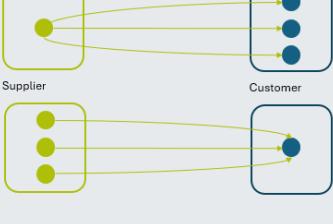
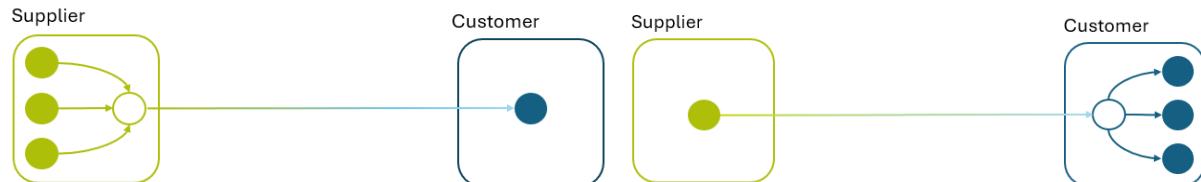



Figure 5. Definition of scopes

Nonetheless, if a supplier is responsible in economic or operative terms for the outbound logistics (i.e., transportation from the supplier to its customer), the supplier shall report the environmental impacts from this transportation in addition to and separately from the cradle-to-gate environmental impacts. Otherwise, the customer shall account for transportation between the supplier's and its own shipping site (factory gate or distribution center).

Table 2. Transportation between supplier and customer.

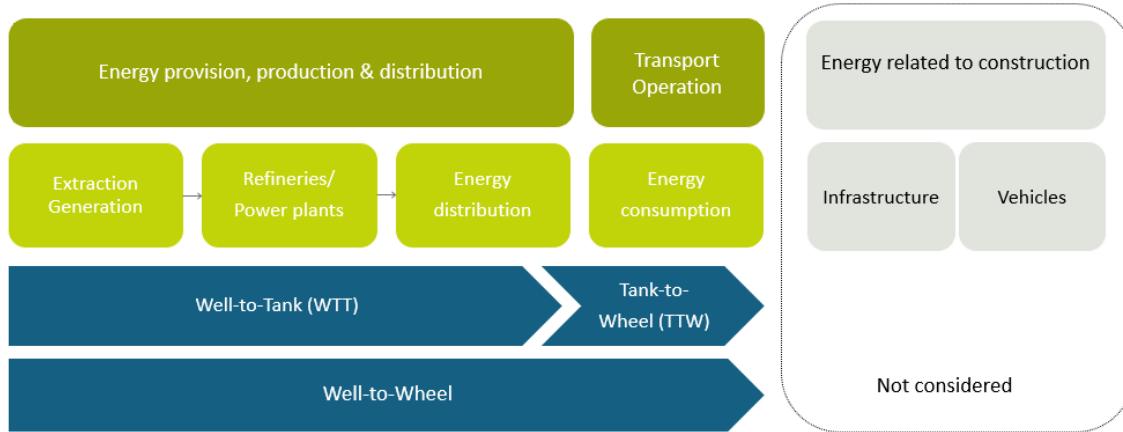

The responsibility of account for emissions from transport depends on which party is responsible in economic or operative terms.

Case	Description	Economic/operative responsibility for transportation from supplier to customer	Accounting for transportation emissions
1	<p>Multiple shipping sites, and/or multiple unloading sites</p>	Inbound transportation contracted or operated by customer	<p>Customer responsible for quantification of transportation emissions.</p> <p>As for multiple transportation relations, emissions shall be attributed by mass between the respective products</p>
2	<p>Multiple shipping sites, and/or multiple unloading sites</p>	Outbound transportation contracted or operated by supplier	<p>Transportation emissions to be reported separately by supplier to the customer (additionally to supplier's PCF).</p> <p>As for multiple transportation relations, emissions shall be attributed by mass between the respective products</p>

Further Clarification on Responsibility and Documentation:

- Transport emissions shall be assessed by the party implementing the transportation process, based on actual data or accepted modeling methods.
- External transport emissions occurring at the supplier–customer interface shall be documented separately, and this documentation must be exchanged between parties during the data handover.

Transports from production sites to suppliers' distribution centers are deemed as suppliers' in-house logistics, i.e., the distribution center is regarded as the shipping point. The same applies to the customer.


Figure 6. Distribution center supplier side**Figure 7. Distribution center customer side**

Regardless of whether transportation emissions are quantified by a supplier or a customer, they shall be consolidated within the customers' calculation of environmental impacts.

5.2.1.1 System boundaries for transportation

Emissions from transportation shall cover emissions from well-to-wheel, i.e., the system boundaries span from energy provision, production and distribution ending at the

transportation operation itself. Emissions from the production of the transportation means and infrastructure, e.g., roads, vehicles, ships and railways, shall not be included.

Figure 8. System boundaries for transportation

In case of transport chains (transport of a product by more than one transport mode) the chain links shall be individually quantified and subsequently summed up.

5.2.1.2 Data sources for transportation

Consistent with the AX goal of basing LCA and PCF quantification on primary data, the ultimate approach of quantifying transportation emissions shall be based on measuring the fuel and energy consumption of a trip and multiplying it by the emission factor of the fuel/energy that covers all upstream emissions of the fuel/energy. Only transport emissions quantified on the basis of measured fuel/energy consumption shall be considered as primary data. In case of collective transport, the primary data based transport emissions require allocation to the individual product. Such allocations do not change the classification of emission data as being primary data. Direct measurement of fuel/energy consumption of a transport operation may however not always be possible and modelling transport emissions is required. Calculation of transport emissions shall follow the recommendation set out in the GLEC Framework V3.0, except for the mandate to include emissions from the construction and dismantling of energy infrastructure. The GLEC framework allows for three approaches to establish transport distances: Shortest feasible distance (SFD), great circle distance (GCD) and actual distance. These approaches shall be used according to the following hierarchy:

- Actual distance
- SFD
- GCD

Emissions reduction from the use of low-carbon fuels may only be claimed if a statement of sustainability (origin and emissions reduction) for the fuel is provided as issued by a bonded warehouse. A tradeable certificate is required.

5.2.2 Accounting for waste treatment

Waste is any material or process output which is not deliberately produced as an integral part of a multi-output production process. No further use of the material or process output is certain.

Additionally, the holder discards or intends to discard or is legally required to discard the residue based on national waste legislation. Waste materials with certain further use but requiring further treatment other than normal industrial practice before use (i.e. waste recovered by recycling) shall follow the requirements laid down in section 5.2.3 on material recycling.

“Normal industrial practice” can include all steps which a producer would take for a product, such as the material being filtered, washed, or dried; or adding materials necessary for further use; or carrying out quality control. However, treatments usually considered as a recovery operation cannot, in principle, be considered as normal industrial practice in this sense. Some of such processing tasks considered as normal industrial practice can be carried out on the production site of the manufacturer, some on the site of the next user, and some by intermediaries, as long as they also meet the criterion of being ‘produced as an integral part of a production process’ (adopted from the EU’s Guidance on the interpretation of key provisions of Directive 2008/98/EC on waste).

A co-product in contrast is produced as an integral part of a multi-output process where its further use is certain. Typically, co-products directly replace a raw material or fuel without requiring further processing other than normal industry practice. For co-product allocation, multi-output allocation applies (please refer to section 5.1.2). The hierarchy as shown in Figure 9 shall be applied (please refer to Annex B for definitions of the respective criteria).

Residues classified as waste following the hierarchy can also be transformed into recycled feedstock. However, this transformation would require further processing other than normal industry practice (see point 3 in Figure 9), such that the residue would be classified as waste in the first instance. Pre-consumer scrap that is not reintroduced into the same process (i.e., all scrap except run-around scrap) shall be defined as waste unless legal evidence (following legislation of the region where scrap is generated, e.g., legal judgement or legal report from regional waste legislation) exists that classifies the pre-consumer scrap material as co-product.

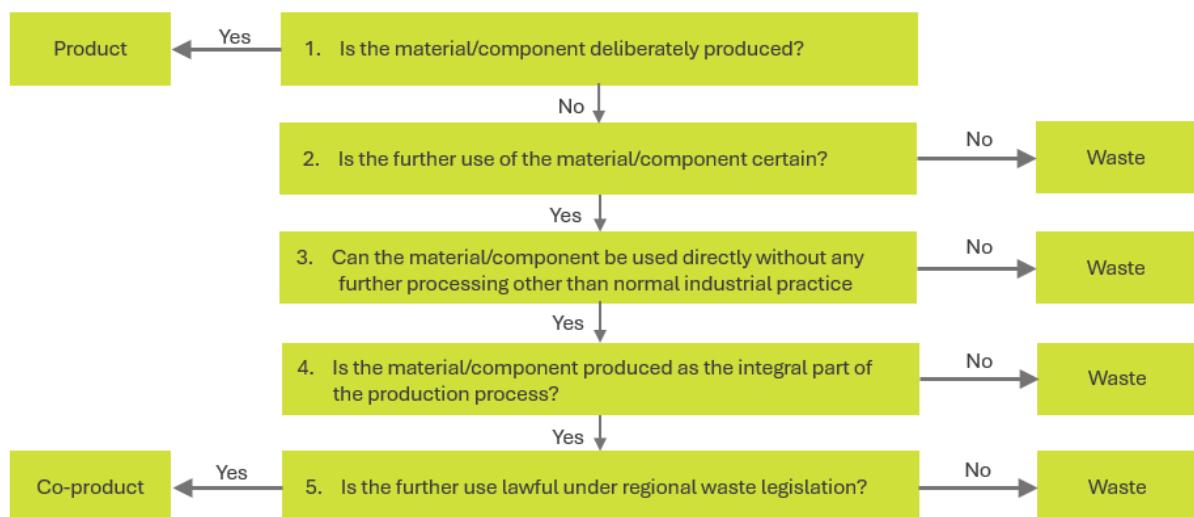
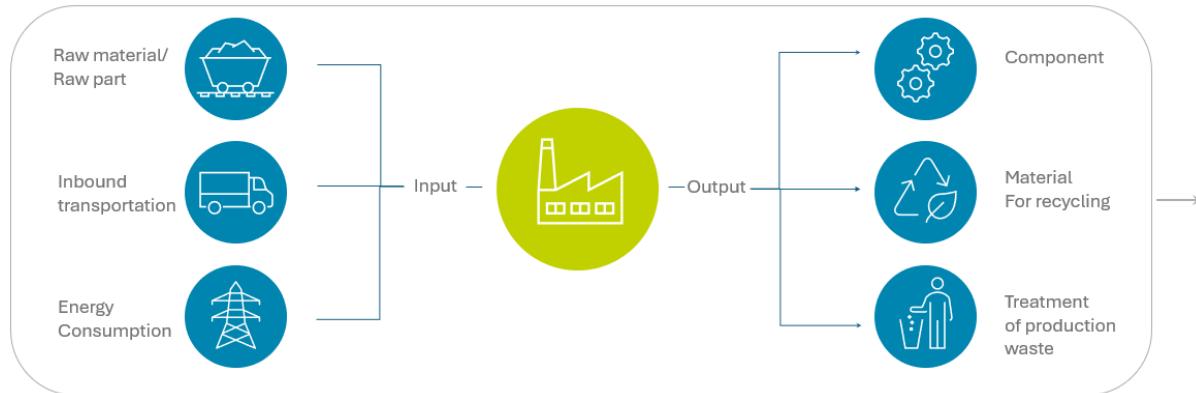



Figure 9. Waste vs. co-product classification hierarchy based on EU Waste Framework Directive

Any emissions arising from the treatment of production waste shall be included in the LCA (polluter pays principle). Since the AX boundaries span from cradle-to-gate, this production waste treatment refers to the production life cycle stage only. Waste can be generated during different stages of a product's life cycle (cradle-to-gate), including:

- Resource extraction, raw material sourcing,
- Production of materials, semi-finished products,
- Production of aircraft parts and components,
- Logistics to supplier gate (including internal logistics).

Figure 10. Waste generation during different stages of a product's life cycle

All auxiliaries and energy inputs and waste outputs shall be fully considered in the calculation of the LCA / PCF. Cut-off rules as described in section 4.3.1 shall be applied.

The company generating waste is responsible for treatment until final disposal (for example, incineration or landfill). This is also referred to as the “polluter pays principle”. If additional processes follow the end-of-waste state, then these are attributed to the company using the recycled or reused material flow as a secondary material. The impact of preparatory steps and supporting activities such as collection, transportation, sorting, dismantling, or shredding shall be added to the inventory results of the product system generating the waste. The impact of the process treating waste with energy recovery (e.g., incineration) shall be added to the inventory results of the product system that generated the waste treated in the process. The energy recovered from waste-to-energy process shall be treated as free of burdens. Production processes may also generate material scrap that is recycled. In this case, please see Section 5.2.3 Accounting for Recycling.

Emissions shall be calculated using primary data regarding the type of waste, its composition and type of waste treatment activity. Depending on the type of waste treatment (for example landfill or incineration), companies may use waste treatment emission factors based on internal primary data. If no primary emission factors are available, emission factors derived from accepted secondary databases can be employed (section 6.2). If companies do not have access to primary data from third-party waste treatment facilities, they should estimate waste treatment emissions based on primary data on the waste type and composition and specific emission factors according to the quantity and type of waste treatment and final disposal (landfill, incineration).

5.2.3 Accounting for recycling

Recycling plays a crucial role in enabling a circular economy and reaching climate protection goals. In particular, recycling of currently unused or inefficiently used material streams is key to reducing primary material use as well as environmental burdens related to current waste treatment. The environmental burden of the recycling process needs to be distributed between the systems receiving and providing the secondary material.

The allocation hierarchy in ISO 14044 does not account for the steering effects and no specific allocation hierarchy for recycling is provided. In principle, ISO 14044 applies the same allocation hierarchy for multi-output systems. However, specific assessment approaches for recycling are described in ISO 14044: Avoided burden for the primary production route and cut-off. Avoided burden of the primary production route usually incentivizes the provision of material for recycling at the end-of-life and, thus should only be applied if these incentives lead to overall emission reductions. However, if environmental incentives can lead to overall emission reductions, this highly depends on the market situation and requires a detailed analysis. Consequently, the cut-off approach in accordance with the recommendations of the IAEG LCA framework shall be applied due to the following reasons:

- Ease of use in an AX network
- Avoidance of double counting
- Higher comparability of LCA/ PCFs within AX

The product system generating material for recycling follows a cut-off approach in a cradle-to-gate scope. Preparatory steps for recycling shall generally be allocated to the waste / recyclable material receiving system (i.e., the product system using the (to be) recycled material). This deviation from the polluter pays principle (as required for waste-to-energy, incineration, or disposal emissions) is a pragmatic exemption as following the polluter pays principle in this context would require defining material- and component-specific system boundaries. Other than emissions from the respective preparatory steps and recycling treatment emissions, to be recycled, to be re-used, or to be re-manufactured materials enter the product system using recycled material burden-free. For pre-consumer scrap, preparatory steps owned by the company generating waste shall be accounted for by the producer of waste (might be insignificant; cut-off rules apply).

AX acknowledges the environmental steering effects of selecting allocation approaches and hence may prescribe other allocation approaches to specific materials and regions in the future. The allocation methods described in sector-specific guidelines may serve as the basis for deciding if other allocation methods are prescribed.

5.2.4 Accounting for emissions from electricity

For each process step within the AX boundaries that requires electricity, companies must determine which emissions were emitted by this specific energy use. Mainly, GHGs are emitted through electricity generation, which is why the focus is particularly on the impact category climate change. All (GHG) emissions resulting from the use of the required electricity during the production process (cradle-to-gate) shall be included in the PCF and LCA. To calculate the share of electricity consumption in the PCF, source-specific emission factors

shall be used. Depending on the type of electricity generation, different amounts of GHGs are emitted. The factors used shall take into account upstream emissions (e.g., the mining and transport of fuel to the electricity plant or the growing and processing of biomass for use as an energy source), emissions during the generation of electricity (e.g., combustion of fossil fuels) including losses during transmission and distribution and downstream emissions (e.g., the treatment of waste arising from the electricity plants).

In connection with the rules defined for accounting for waste treatment (section 5.3.2), energy recovered from the waste-to-energy process shall be treated as free of burdens.

5.2.4.1 Electricity from a directly and dedicated connected generator

If electricity is produced on site with a direct connection to the power source (e.g., photovoltaic plant on the roof, wind park beside the production facility, own fossil power plant) or a direct connection to a power source operated by a power supplier, the amount of electricity consumed by this power source and the related emission factor shall be used if no contractual instruments have been sold to a third party (primary data). Otherwise, the local- or country-specific residual grid mix (secondary data) shall be used, as recommended by IAEG LCA Aerospace Framework. In most recognized LCA databases there are details and coverage in the grid mix to recommend their usage, if the region of production is within the coverage. As verification of using electricity from the company's own facilities, proof of installation of the company's own generation technology as well as a meter reading shall be available. The amount of electricity and the period of the meter reading shall be equal to the amount of electricity required and the respective period. In addition, the meter reading should be confirmed by a third party to prove that the specified generation technology, the respective period and the amount of electricity generated are in fact as stated.

5.2.4.2 Electricity (from a power supplier or) via contractual instruments

If electricity is accessed via a contractual instrument, the following electricity mix shall be used:

1. Supplier-specific electricity product shall be used if:

- a tracking system is installed in the region/country.
- the set of minimum criteria to ensure the contractual instruments are reliable is met, i.e., no double counting and no exclusions.

2. Total supplier-specific electricity mix, i.e., the share of electricity supply specific to the supplier, shall be used if the set of minimum criteria is met to ensure the contractual instruments are reliable.

The country-specific residual grid mix (consumption mix) shall be used (such as AIB5 for Europe). Country-specific means the country in which the activity occurs. The regional residual grid mix (consumption mix), e.g., EU+EFTA, or region representative residual grid mix, consumption mix, shall be used. In general, three different reference types can be defined for contractual instruments:

Utility Tariffs

When using an electricity supply contract, electricity is purchased from a supplier via the public grid.

Energy Attribute Certificates (EACs)

EACs should enable renewable energy to be tradable. An EAC is a certificate that proves that one megawatt hour of electricity was generated from renewable energy and transferred into the electricity grid. EACs can be separated from the physical quantity of electricity and therefore traded independently. Depending on the region, different systems are in place for trading EACs. For example, International Renewable Energy Certificates (iRECs) are traded through an international registry as a renewable energy instrument. In contrast, Renewable Energy Certificates (RECs) or Guarantees of Origin (GoOs) are examples of verification instruments in specific regions.

Power Purchase Agreements (PPAs)

A PPA is an electricity supply contract concluded directly between an electricity producer (plant operator) and an electricity consumer. The contract specifies the delivery of a certain amount of electricity over a particular period at an agreed price. In general, the types of PPAs can be differentiated. There are physical PPAs, which can be further subdivided into on-site and off-site, and virtual PPAs. Electricity from PPAs can only be considered an eligible linked with EACs.

The contractual instrument used to calculate the related emission factor shall meet the following minimum criteria:

- It shall convey the information associated with the unit of electricity delivered together with the characteristics of the generator.
- It shall be assured with a unique claim and therefore be the only instruments that carry the environmental attribute claim associated with that quantity of electricity generated.
- It shall be tracked and redeemed, retired or cancelled by or on behalf of the company (e.g., by an audit of contracts, third-party certification, or may be handled automatically through other disclosure registries, systems, or mechanisms).
- It shall refer to the same year to which the contractual instrument is applied. The attribute tracking instrument shall refer to an electricity production asset located in the same regional market (within which an interconnection can be proven).
- If the electricity consumed comes from more than one electricity mix, each mix source shall be used in terms of its proportion in the total kWh consumed. If a certificate of origin covers only a part of the consumed electricity, the residual grid mix shall be used for the uncovered amount.

In addition to the emission factors as shown in the contractual instrument of the electricity, the following emissions shall be taken into account:

- Upstream emissions (e.g., the mining and transport of fuel to the electricity plant, the growing and processing of biomass for use as an energy source or construction and maintenance).
- Downstream emissions (e.g., the treatment of waste arising from the electricity plants).

5.2.5 Homogeneous parts

While some parts in the aerospace supply chain are considered identical and require sampling strategies, there is also the related issue: Products are nearly identical but differ systematically

in a single (or very few) aspect(s). This very often leads to a PCF (or in future also relevant for other impact categories) that is identical or differs systematically with that aspect. If this applies, products are called homogeneous parts from a homogenous product family. PCF results obtained for homogeneous parts may be used after interpolation as described below regarding the differentiating aspect for further parts of that product family.

To belong to a homogenous product family, the products shall have the following characteristics:

- The same main function.
- The same product standards.
- The same manufacturing technology, processes, and materials.
- The same supply routes.

A homogenous product family can be substantiated if a product parameter (physical characteristic) can be identified that differentiates otherwise identical parts systematically with respect to PCF and is proven by a sensitivity analysis. PCF results for homogeneous parts allow for a linear regression with respect to the differentiating parameter that renders a coefficient of determination $R^2 > 90\%$. Cut-off rules apply for the calculated PCF. The sample size to prove interpolation quality shall be $n > 20$.

A PCF for a part from a homogeneous product family shall be calculated by interpolation only. A homogeneous product family may be defined on the basis of an intermediate product if the final product to market is produced by varying add-on parts to the intermediate product or additional process steps, e.g., specific painting processes, additional leak tests or washing processes. For the additions in parts or processes to the intermediate product the respective CO₂e contribution shall be added to the final PCF. For the calculation of the primary data share, data does not need to originate from the product system under study, because primary data might relate to a homogeneous part. The proof of a homogeneous product family shall be documented and provided to customers on request. A review of the proof shall be performed after five years at the latest.

5.2.6 Accounting for chain of custody models

Chain of custody is an administrative process by which information about materials is transferred, monitored, and controlled as those materials move through supply chains [ISO 22095:2020]. There are, in principle, five possible chain of custody models, illustrated in Figure 11. Their common objective is to guarantee correct accounting and corroborate a link between ingoing content, e.g., 'sustainable', 'recycled' or 'organic' by harmonized definitions, and the final outgoing product. They differ whether it is a physical or administrative link. Furthermore, they differ in the set of rules for balancing, and the option to keep materials streams segregated or not.¹²

¹² Ellen MacArthur Foundation (2019): Enabling a circular economy for chemicals with the mass balance approach. <https://www.iscc-system.org/wp-content/uploads/2022/04/Mass-Balance-White-Paper.pdf>

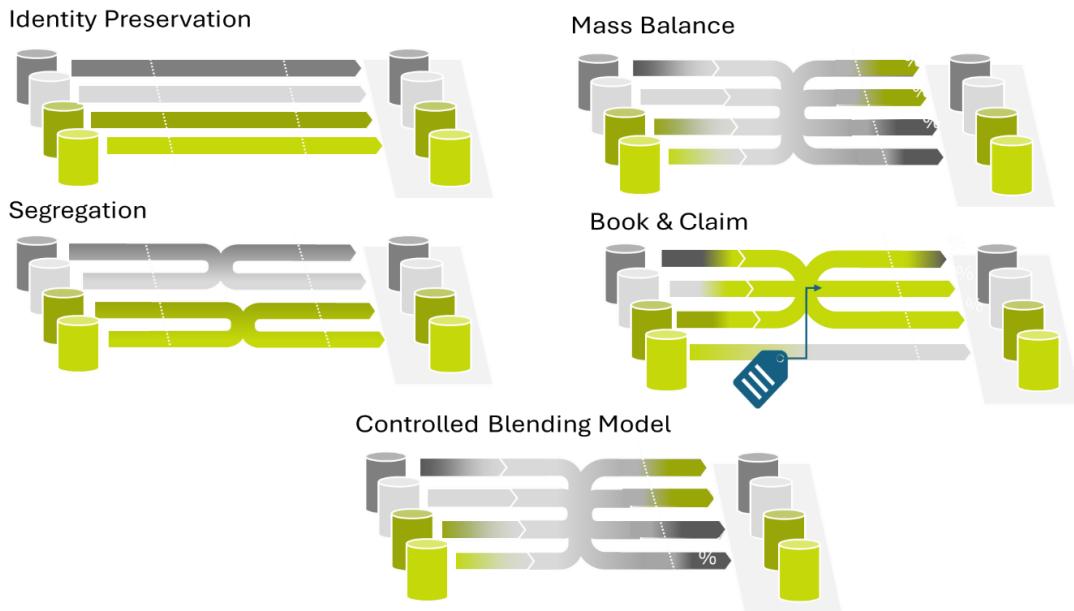


Figure 11. Overview of chain of custody models

The following table was adapted from the above-cited Whitepaper and provides high-level explanations and differentiations for the five chain of custody models:

Table 3. Explanation chain of custody models
[adapted from EMF Whitepaper Table 1, page 11]

Model	Explanation	Example
Identity preservation	It is possible to physically track the product to its desired origin, ensuring unique traceability and physical separation of products from other sources along the supply chain.	Buying food from a single certified producer
Segregation	Consists in the aggregation of volumes of products of identical origin or produced according to the same standards in one stock item.	Buying food from a trader that exclusively handles identically certified supplies.
Mass balance	Considering the output, no physical or chemical difference exists between in-scope and out-of-scope. It involves balancing volume reconciliation to ensure the exact volumes of in and out-of-scope source is maintained along the supply chain. Given that the volume or the ratio of sustainable material integrated is reflected in the product produced and sold to customers. This model requires that a reconciliation period is defined (e.g., a month, a year). Two different allocation methods can be applied within the mass balance model to manage and assign sustainability attributes: the Rolling Average Method and the Credit Method. <ul style="list-style-type: none"> In the Rolling Average Method the share of sustainable input is averaged over time, allowing companies to claim a time-weighted average proportion of sustainable content in their outputs across the reconciliation period. 	Buying a certain percentage of a supply from certified origin. Applies to, e.g., sustainable forestry for wooden materials, recycled, bio-based or renewable materials, organic cotton.

- The Credit Method allows companies to accumulate and assign credits for sustainable inputs to specific outputs, meaning that the sustainability attributes are explicitly linked to individual products.

Book & claim – restricted certificate trading	The certified product/component is disconnected from the certification data but belongs to the same production system or value chain. The certified product evolves in separate flows from the certified supply. Certificates are issued at the beginning of the supply chain by an independent body reflecting the sustainable content of supplies. The intended outcome is that outputs from one supply chain is associated with total claims corresponding to the certified input.	Buying material with renewable / recycled / biobased content. Certificates with guarantee of origin or comparable certifications declaring e.g. recycled, renewable, biobased content. CO ₂ capture certificates from a production system controlled by the company, e.g., carbon capture and storage.
Controlled blending	This model allows the blending of certified and non-certified materials under controlled conditions, ensuring that the total amount of certified input is known and managed throughout the process. Unlike mass balance, blending occurs at defined points in the supply chain, and traceability is maintained through robust documentation and verification systems. The aim is to gradually increase the share of certified material while maintaining transparency about the composition of final products.	Producing packaging where a defined proportion of recycled plastic is mixed with virgin material in a controlled production batch. The percentage of recycled content is verified and declared to the customer, ensuring accountability and supporting sustainability goals.

To calculate emissions according to the AX rulebook, all types of models may be taken into account if the requirements listed below are met and an independent third-party chain of custody verification for the balance of materials is available. The balance between input and output shall be correct.

The mass balance approach helps enable fossil raw materials to be replaced by more sustainable alternative materials (e.g., with recycled content, bio-content). In contrast to a segregated use of alternative raw materials, mass balance enables the use of existing production networks with low or no investments into new process technologies and production facilities. A book and claim model should only be applied as additional information, as it is not consistent with ISO 14040/44. An example of a book and claim model is applied in green electricity markets and receives more attention in other sectors as way to support circular transformation of the industry; therefore, it is accepted as a solution. There will be a regular review by AX to decide about the further necessity.

5.2.6.1 Guiding principles

In implementing chain-of-custody methods, including mass balancing, the following set of guiding principles shall be fulfilled:

1. The use of chain-of-custody approaches shall achieve significant changes and an effective transition towards a more circular, more bio-based and lower emissions production in complex value chains.
2. The choice and implementation of chain-of-custody approaches and models shall be transparent, clear and credible – abiding by relevant standards such as ISO and CEN. Such credibility can also be achieved but is not limited to accepted third-party

certification schemes, e.g., ISCC PLUS and RSB. Note: Certification schemes are not yet available in all sectors.

3. Labels and claims referring to chain-of-custody controlled specified characteristics and used on products shall fulfill the following requirements:

- Description of the chain-of-custody approaches and models.
- Accurate and appropriate implementation of the chain-of-custody model.
- Compliant with existing standards and regulations.
- Non-misleading.

If the “specified characteristic” content in products cannot be measured and verified, labels and claims shall mention this. For example, this often applies to mass balancing (e.g., chemically recycled content in plastics).

4. No double counting: A reliable accounting system shall be installed at each operating site to ensure that the claimed volume on the output side exactly matches the actual volume on the input side within the declared time and regional scope.
5. The operating sites in the spatial boundaries for mass balancing are under the operational control of the same company/corporate group/joint venture.

Additional requirements for a mass balance chain of custody approach:

6. It shall be technically possible according to standard industry practice to produce a mass-balanced product from an alternative feedstock. Share of mass-balanced material can be technically lower than the attributed share.
7. Only additional measures relative to the PCF of the residual product shall be considered. The residual product is the product without reduction measures used in mass balance within the respective reporting year.
8. Physical traceability of the material in the supply chain: By default, it shall be possible for portions of the material to be physically present in the product.
9. Applied emissions factors for the mass-balance system boundaries shall be product and process specific.

6 Data sources for inventory

6.1 Primary data

Primary data refers to quantified values for a process or activity that are obtained either through direct measurement or calculations based on such measurements. It is important to maximize the proportion of primary data used and to ensure high data quality for both primary and secondary data sources.

Primary data encompasses both primary activity data – such as technical flows – and primary emission factors, which represent e.g. the carbon footprint of a specific activity in terms of kg CO₂eq per unit (see Table 4). Therefore, if material consumption is measured but paired with a secondary emission factor, this does not qualify as primary data (refer to section 7.2.4). Primary data can be collected via methods such as meter readings, purchase documentation, utility invoices, engineering calculations, direct monitoring, material or product balances, stoichiometric analysis, or other approaches that yield process-specific information from the company's value chain. In practice, a single calculation may incorporate both primary and secondary data, with the proportion of primary data indicated by the primary data share. For instance, when estimating emissions from electricity use, primary activity data (e.g., measured kWh consumption) might be combined with a secondary emission factor (e.g., national average GHG intensity per kWh) from official inventories.

Table 4. Possible variances of primary and secondary data

Approach	Direct emission measurement			
Primary data, if	Source of emission is within company boundaries and is measured			
Approach	Activity data source		Emission factor source	
	Energy	Material	Energy	Material
Primary data, if	Consumption measured (primary)		For on-site production Emission measured (primary) For supplier-specific electricity • Primary with guarantee of origin	Measured and reported as a share by supplier
Secondary data, if	Consumption/production measured (primary)		Secondary databases, data proxy	

Data may require mathematical processing—such as scaling or aggregation—to align it with the declared unit or the process' reference flow (refer to Section 5.1.2). Mathematical modeling can be applied to estimate missing values, while data aggregation might be necessary to smooth out anomalies caused by updates, maintenance shutdowns, or other unusual operating conditions.

If product-specific measurements or calculations for activity data or emission factors are unavailable, it is necessary to use the best available site-specific or even company-level data. Such data may encompass emissions beyond those directly associated with production, for example, those arising from research and development activities.

6.2 Secondary data

AX aims to base its LCA calculations primarily on primary data, therefore a transition period is required. During this interim phase, secondary data must be used to maintain continuity in the LCA data exchange throughout the entire supply chain.

When secondary data is used, several key requirements should be met:

Secondary data should be applied conservatively to ensure that LCA results are not underestimated compared to those based on primary data.

The selection of secondary data should follow representativeness criteria (see Section 7.2.5) to minimize errors in the LCA. The effort to find the most accurate data should be balanced with practical considerations.

All AX members, regardless of their size, resources, or LCA expertise, shall have access to secondary data.

In order to ensure a AX specific data provision, the following consecutive approaches shall be addressed:

- Definition of AX prescriptive secondary data.
- Definition of a whitelist of data sources.

Combinations of the approaches are also feasible.

To meet the above-mentioned requirements in the future, the first option is clearly the superior approach. By prescribing the use of specific secondary data with adequate precision and following a conservative approach, comparability of results and avoiding underestimation of LCA results can be ensured. Prescribed data sources guarantee that all AX members use the same emission intensities. Equal access to data must therefore be ensured. AX-provided datasets would also eliminate the need for individual data quality ratings. To prevent arbitrary use of universal databases, clear rules are needed to define which approximations are acceptable under AX guidelines. At the moment no AX prescriptive secondary data exists but would be desirable for the aerospace industry. A pragmatic solution with the support of various associations seems to be the most viable way forward.

In alignment with IAEG LCA Aerospace Framework, AX recommends using the following databases as a whitelist for LCA data sources:

- Sphera: Renowned for its extensive LCA databases, Sphera provides detailed data on materials and processes relevant to various industries, including aerospace.
- Ecoinvent: One of the most comprehensive LCA databases available, Ecoinvent offers high-quality data on a wide range of materials and processes, including those specific to aerospace.
- NASA Open Data Portal: This portal provides access to a vast array of datasets related to aerospace and other scientific fields.
- Federal Aviation Administration (FAA) Data & Statistics: Offers data on various aspects of aviation, including operational metrics and environmental impacts.

- USC Aerospace Database: Includes records from periodicals, conference papers, trade journals, and technical reports, covering all aspects of applied research in aerospace.

In these databases there are still gaps especially for materials. IAEG WG12 is addressing these gaps and will provide further recommendations to improve the existing databases. AX recommends following the most recent IAEG LCA Aerospace Framework version.

If none of these sources provide the necessary data, other sources may be used to fill gaps, e.g. data from scientific sources. If no data is available, proxy data can be used, but its use must be documented and made transparent to auditors and data recipients (see Section 7).

When using secondary data as emission factors, the following quality criteria must be met:

- **Temporal representativeness:** The data's reference year should match the assessment period of the activity data.
- **Geographical representativeness:** The data should reflect the most relevant geographic location for the process.
- **Technological representativeness:** The data should be technologically relevant to the process.

7 Required elements for LCA and PCF data exchange

To enhance comparability and consistency, a standardized process for LCA data exchange is essential. Sharing LCA data and the according meta data between stakeholders within the supply chain is a prerequisite for more granular and accurate calculations. Emissions data calculated in line with the AX Framework shall therefore be shared in accordance with AX data model and requirements in section 7.2.

7.1 Data model

The data model contains the most relevant information that companies shall exchange to enable LCA calculation throughout the entire supply chain in accordance with the AX LCA Rulebook. A report on all required details shall be created to document all relevant information.

7.2 Details on the required data elements

7.2.1 Time period

Environmental impacts shall by default be reported averaged over the period of one year (reporting or calendar year) to avoid seasonal fluctuations and reflect typical production conditions. Shorter periods may be considered if data on a full year are not yet available. Longer averaging periods may be considered but shall not exceed three years. Any averaging period deviating from the default shall be flagged and justified.

7.2.2 Temporal validity

Environmental impacts shall by default be reported for the most recent year (reporting or calendar year). An annual check is mandatory to ensure data actuality. To perform the annual check, the initial screening analysis should be updated based on data for the most recent year. An update of data is mandatory if the reported impacts increase by 10% or more based on the screening analysis compared to the previous reporting period. Additionally, an update of data is mandatory in the following situations (adapted from GHG protocol):

- Structural changes in operation to the product system under study, including significant process change in operation, technology advancement, raw material or energy changes.
- Changes in calculation methodology or improvements in the accuracy of emission factors or activity data or inclusion of new types of sources that result in a significant impact on the emissions data.
- Discovery of significant errors, or a number of cumulative errors that are collectively significant.

7.2.3 Geography

Environmental impacts shall by default be reported on the plant level. If no plant specific data is available or accessible, averaging over a region or country may be considered but shall be flagged as such.

7.2.4 Primary data share

The Primary Data Share (PDS) indicates the proportion of a LCA data that is derived from primary data. To ensure transparency, the PDS indicator should be calculated and reported for each data point to show the extent of primary data usage. In the following, the PDS is explained using the PCF as an example; the calculation method applies analogously to all impact categories. Within the context of AX, the PDS for the impact category climate change shall be only reported for non-biogenic carbon, excluding biogenic carbon. Following the transition period, this reporting will shift to include biogenic carbon within the total PCF.

To maintain consistency in PDS values whether calculated for individual steps or across aggregated process chains the PDS must be based on the absolute sum of all positive and negative environmental impact / PCF contributions (e.g. PCF_{as}). These individual contributions (e.g. PCF_i) reflect either inputs from upstream suppliers or emissions from specific process steps carried out by the reporting organization. As illustrated in Figure 12, the concept and calculation of PCF_{as} is straight forward. In the absence of negative contributions, PCF_{total} and PCF_{as} are equivalent. In instances where PCF_{as} is not available, the PCF_{total} function should be used as a backup for PDS calculation.

$$PCF_{as} = \sum_i |PCF_i|$$

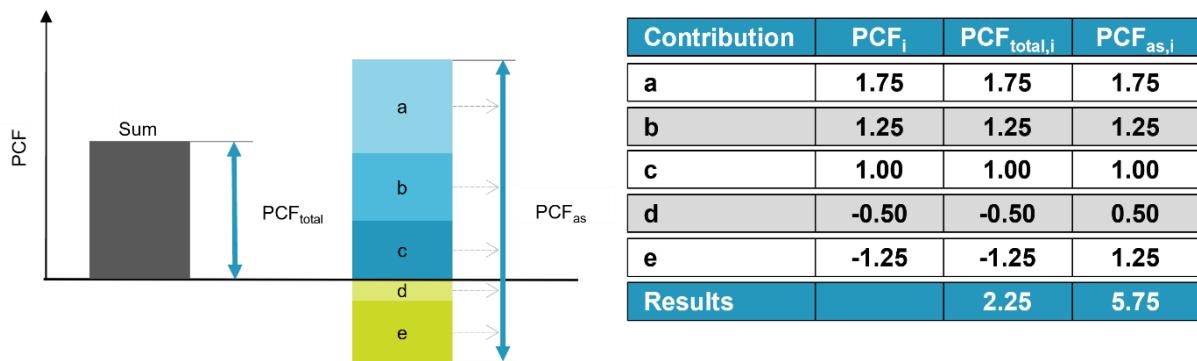


Figure 12. Definition of PCF_{as}

The introduction of PCF_{as} now allows for the definition of primary data shares:

$$PDS_{PCF} = \frac{|\text{Part of PCF based on primary data [kg CO}_2\text{ eq.]}|}{PCF_{as}[\text{kg CO}_2\text{ eq.}]}$$

When multiple individual PCF contributions are reported, each with their own primary data share (PDS_i), the aggregated PDS should be determined as a weighted average, where the weights are the absolute PCF contributions of each component.

$$PDS_{aggregated} = \frac{\sum_i (|PCF_{total,i}| \times PDS_i)}{\sum_i PCF_{as,i}}$$

An example can be found in the AX LCA Guidance Document.

7.2.5 Data quality rating

In AX, companies determine the LCA based on the following data sources (see Figure 13 for reference):

1. Internal primary data, which refers to data collected from processes operated directly by the reporting company,
2. Primary data from external parties within the supply chain, meaning data related to processes not performed by the company itself but provided by its suppliers,
3. Secondary data used when the process is outside the company's operations and no primary data is available from suppliers.

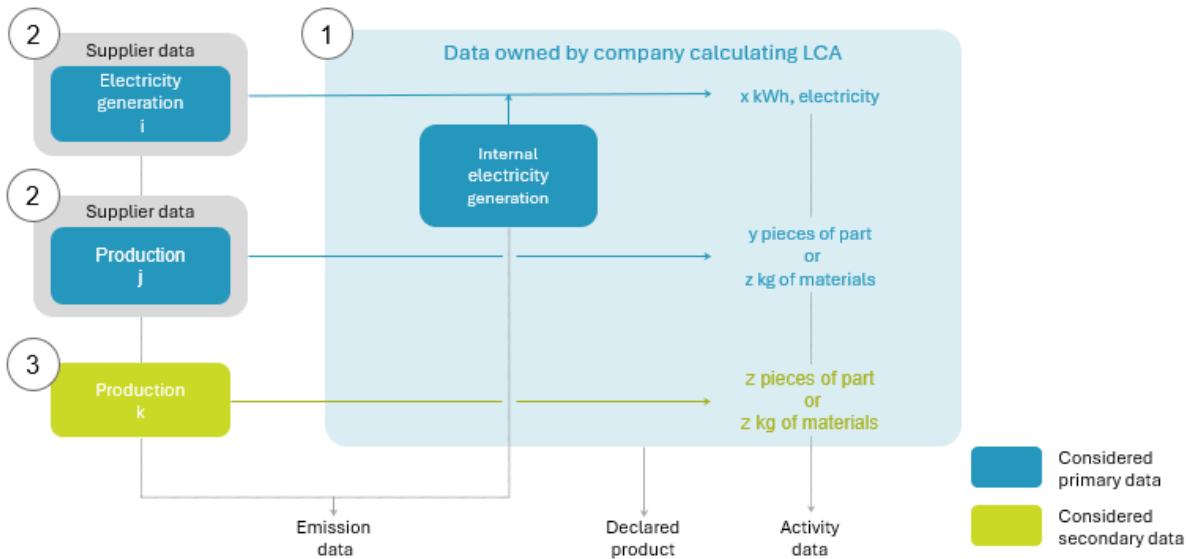


Figure 13. Data sources for PCF calculation

As part of the data collection phase, companies are required to evaluate the quality of their activity data, emission factors, and/or direct emissions data using Data Quality Ratings (DQR). The data quality assessment will be required after the transition period.

Currently, companies are able to calculate LCAs within a cradle-to-gate system boundary using various types of data. The quality of this data can vary considerably. Conducting data quality assessments provides a clear picture of the reliability and credibility of both the input data and the resulting LCA figures.

Four data quality indicators are to be applied when evaluating data quality. These indicators are as follows:

- Technological representativeness (TeR): the degree to which the data reflects the actual technology(ies) used in the process.
- Temporal representativeness (TiR): the degree to which the data reflect the actual time (e.g., year) or age of the process.

- Geographical representativeness (GeR): the degree to which the data reflects actual geographic location of the processes within the inventory boundary (e.g., country or site).
- Completeness: the degree to which the data are statistically representative of the relevant activity. Includes the percentage of locations for which data is available and used out of the total number that relate to a specific activity. Also addresses seasonal and other normal fluctuations in data.

Evaluating data quality during the data collection phase enables companies to implement improvements more effectively than if such assessments were conducted after data gathering is complete. Both primary and secondary data must be assessed to determine their accuracy in reflecting the actual production of the product being analyzed.

The data quality rating provided by the original database does not always apply directly to secondary data. Instead, it should be used as a reference point for evaluating how representative the data is of the specific product under investigation. This means assessing how well it mirrors real production conditions within the supply chain.

Each LCA must include a calculated and reported data quality rating based on the four criteria listed above. These criteria are assessed using a semi-quantitative scoring system, as outlined in Table 5. The data quality is categorized into four levels, ranging from 1 (very good) to 4 (poor). The indicators for representativeness (technological, geographical, temporal) and completeness describe how accurately the selected data and processes reflect the system being analyzed.

Table 5: Data quality rating criteria

	1 - Very Good	2 - Good	3 - Fair	4 - Poor
TeR	Primary data and site-specific. It directly reflects the exact technology, processes, and operating conditions.	Primary data collected directly from a very similar technology or process.	Based on industry average data for a equivalent technology, or data from a generally comparable but not identical technology (secondary data).	Data is generic, from a different or unknown technology.
TiR	Data collected for the specific reporting year or within a very recent timeframe (maximum of 1 year).	Data is relatively recent (last 3 years), with minor deviations from current conditions.	Data is older (maximum of 5 years old) but still considered somewhat relevant.	Data is significantly outdated (more than 5 years old) or does not reflect current operational conditions.
GeR	Data is site-specific and directly originates from the precise geographical location.	Data is specific to the region or country where the activity occurs. Could be high-quality regional average data or primary data from a representative sample.	Based on broader geographical averages data (continental) or from a non-specific location assumed to be representative (countries with similar profile).	Data is from a completely different geographical context, or generic global averages are used without specific justification.
Completeness	The data covers (nearly) all relevant locations or activities, including significant seasonal and operational fluctuations, ensuring full statistical representativeness	The data covers > 75 % of relevant locations / activities and include most seasonal and operational fluctuations, providing high representativeness with only minor gaps.	The data cover between 50 % and 75 % of the relevant scope, with only partial inclusion of seasonal and operational variations, leading to limited statistical representativeness.	The data cover less than 50 % of relevant locations or activities, lack major seasonal or operational aspects or the statistically representative is unknown.

To ensure clarity and transparency, companies are required to report the individual ratings for each data quality indicator separately. If the product under study is manufactured at multiple locations, the corresponding DQRs must be determined based on a production volume-weighted average across those sites.

The propagation of data quality through the supply chain should follow the same approach as used for the Primary Data Share (PDS). In instances where a DQR is not provided, the system will default to applying the lowest possible data quality score, as defined in the sample scoring

table (Table 5). Therefore, the lowest rating may signify either the presence of genuinely low data quality or the absence of any reported rating.

7.2.5.1 Aggregated data quality rating

When calculating the aggregated data quality, the relative contribution of each process is to be based on the absolute values of the LCA. This ensures accurate weighting even in cases where individual processes show negative LCA values, such as when there is for example for the impact category climate change CO₂ uptake from biogenic or fossil sources with a characterization factor of -1 kg CO₂ eq. per kg CO₂. The utilization of absolute values is essential in preventing underestimation of the influence of such processes and ensuring the integrity of the aggregated DQR and PDS calculation. For reference, please see Figure 14.

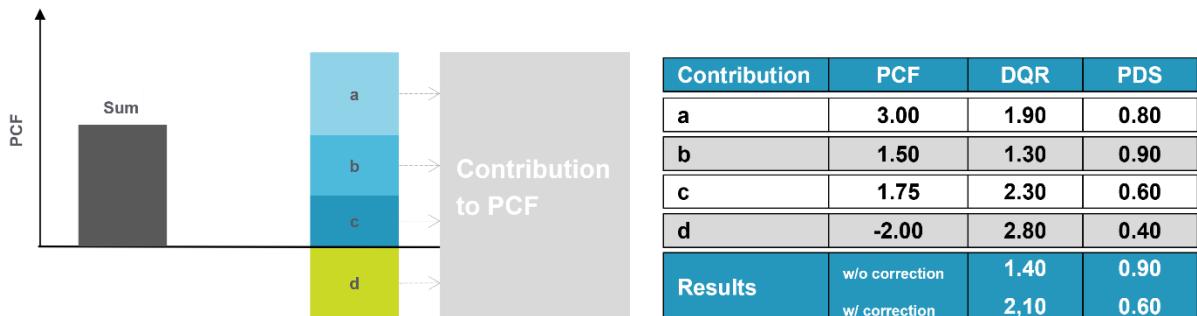


Figure 14. Calculation of an aggregated DQR and PDS

For the calculation of the aggregated DQR the following procedure applies:

1. Identify the most relevant processes that together account for at least 80% of the total LCA of the dataset. Rank these processes from highest to lowest based on their contribution to the overall LCA
2. For each of these most relevant processes, please assess the four DQR criteria TeR, TiR, GeR, Comp. and R. The values for each criterion are to be determined in accordance with the specifications outlined in Table 5.
3. Calculate the relative contribution of each selected process to the 80% subset of the LCA.
4. The weighted average for each DQR criterion (TeR, TiR, GeR, and Comp) should be calculated using the process contributions from Step 3 as weights. The general formula for the weighted average is shown below using the TeR as an example:

$$\overline{Te_R} = \sum_{i=1}^n Te_{R_i} \times w_i$$

With:

- Te_{R_i} is the TeR score of process i
- w_i is the relative contribution (weight) of process i to the 80% LCA subset
- n is the number of relevant processes contribution in the LCA subset

5. Calculate the total DQR of the dataset using the next equation, where the weighted averages TeR, TiR, GeR and Comp are obtained from step

$$DQR = \frac{\overline{Te_R} + \overline{G_R} + \overline{Ti_R} + \overline{Comp}}{4}$$

7.2.6 Reporting carbon offsets

In order to share LCA data across the AX network, it is necessary to share the full cradle-to-gate LCA results. Any carbon offsets (as defined in the glossary) must be excluded from the reported results.

If applicable, suppliers providing LCA data to customers shall report any carbon offsets separately from the core LCA data. This applies to both certified and non-certified offsets. In instances where carbon offsets have been purchased, the origin and details of these offsets must be disclosed transparently, including references to the original certificates.

For guidance on incorporating renewable electricity certificates, please refer to Section 5.2.4. Carbon-neutrality claims for parts and components based on carbon offsetting are outside the scope of this LCA rulebook.

Annex A – Catena X as the basis of this rulebook

This rulebook builds upon foundational elements of the CX-PCF Rulebook Version 4.0. Where applicable, content has been either directly transferred or adapted to reflect the specific regulatory, operational, and data realities of the aerospace sector.

The following table identifies all such transfers and clarifies the extent of reuse. This is intended to ensure transparency, traceability, and alignment with intellectual property and compliance requirements.

Table 6. Methodological Comparison with the CX-PCF Rulebook

Chapter in AX	Chapter in CX	Methodological Comparison
1.1 – Purpose and Scope of the Rulebook	Chapter 1.1 to 1.4	AX and CX both aim for standardization and data consistency. AX adds full LCA guidance and stricter data quality rules for the aerospace sector, with strong focus on interoperability with CX and global standards.
1.2 – Life Cycle Assessment in chapter 1.1 to 1.4 the Aerospace Industry		Both use ISO standards and WBCSD alignment. CX focuses on automotive PCF; AX addresses greater aerospace emissions and data gaps, extending CX principles to full LCA and broader impact categories and aligning with IAEG WG12.
2.1 – Version	Chapter 2.1	Same approach with minor adjustments to adapt to the aerospace sector. AX and CX require LCAs/PCFs to follow the latest version of their rulebooks.
2.2 – Terminology	Chapter 2.2	Identical use of ISO terms (“shall”, “should”, “may”, “can”) for defining requirements and recommendations.
2.3 – Topics out of Scope	Chapter 2.3	Both exclude full recycling strategies beyond secondary materials and focus on carbon footprints. AX applies this to aircraft and components; CX applies it to automotive parts.
2.4 – Source Attribution Guidelines	—	The AX-LCA rulebook references the CX-PCF rulebook as its structural and methodological foundation.

Chapter in AX	Chapter in CX	Methodological Comparison
2.5 – Transition Period	Chapter 2.4	Both define a transition period with optional rules becoming mandatory later. AX uses the same phased approach introduced by CX. This approach facilitates adoption of new and complex rules.
3.1 – Data Handling Requirements	Chapter 3.1	Both rulebooks build on ISO 14040, and 14044. CX builds additionally on ISO 14067, whereas AX focuses on LCA. AX adds alignment with IAEG and the CX-PCF rulebook itself. Compatibility with sector standards like TFS and worldsteel and adapting it to aerospace supply chains will be initiated in future stages.
3.2 – Hierarchy of Conformity	Chapter 3.2	Both use a clear hierarchy: ISO standards first, followed by industry-specific and sector-specific rules. AX mirrors CX but applies it to LCA rather than just PCF, emphasizing downstream transparency for aerospace data.
4.1 – Introduction to LCA and PCF Methodology	Chapter 4.1	Both AX and CX apply attributional LCA/PCF based on ISO 14040, 14044, and 14067, using IPCC AR6 factors and GHG Protocol gases. AX adopts CX's PCF calculation structure, including fossil and biogenic carbon splits, but extends the methodology to a full aerospace LCA framework with plans to add more environmental impact categories beyond climate change in alignment with IAEG WG12.
4.2 – Functional and Declared Unit	Chapter 4.3	CX emphasizes declared units (e.g., 1 piece, 1 kg) for PCF comparability; AX balances both functional and declared units, aligning with full LCA needs and enabling aerospace-specific data exchange.
4.3 – System boundaries and completeness requirements	Chapter 4.2 & 4.3	Both AX and CX use a cradle-to-gate system boundary, excluding use and end-of-life. AX applies similar boundary logic and exclusion criteria, including a 3% cut-off threshold, and requires a documented screening process for identifying insignificant processes. The structure and exclusions, like employee commuting or capital goods, are aligned, with AX applying them specifically to aircraft production contexts. Crucially, AX aligns with the updated CX V4 requirement that data recalculation is mandatory if the reported impacts increase by 10% or more based on the screening analysis compared to the previous reporting period

Chapter in AX	Chapter in CX	Methodological Comparison
4.4 – LCI modelling framework and handling of multifunctional processes	partially addressed in CX limits PCF to climate change (GWP). AX plans to expand to additional LCA Chapters 4.2, 5.1.2, categories identified by IAEG as critical for aerospace: climate change, resource use, photochemical ozone formation, acidification, and particulate matter, reflecting the industry's broader environmental priorities.	
4.5 – Conducting the Life Cycle Impact Assessment (LCIA)	—	AX adds a chapter for the LCIA process for conducting full LCAs in the future.
5.1 – Accounting for LCA/ PCF	Chapter 5.1	Both adopt attributional LCA and follow ISO 14067 for PCF calculation; CX provides a standardized allocation hierarchy with sector drop-in rules, while AX applies the same logic but integrates aerospace-specific modelling practices and emphasizes transparency in stakeholder assumptions.
5.2 – Additional guidance	Chapter 5.2	CX provides modular guidance for specific topics like transport, waste, recycling, electricity, and chain-of-custody using predefined categories and decision rules, critically introducing structured requirements for Prospective PCF. AX mirrors this structure (not including prospective PCF) but adapts it to aerospace context, extends applicability beyond PCF. AX also generally excludes emissions from the construction or dismantling of all energy infrastructure (capital goods), which is contrary to the CX mandate to include infrastructure emissions for electricity generation to properly account for non-dispatchable renewable sources. AX introduces an additional fifth chain-of-custody model ("controlled blending"). As the book and claim model is not aligned with ISO 14040/44, AX only recommends it as an informative tool, but not as solely useable chain of custody model.
6.1 – Primary data	Chapter 6.1	CX defines primary data strictly as directly measured or calculated values, excluding averages; AX adopts the same definition but adds emphasis on traceability, documentation, and confidentiality to address the complexity of aerospace supply chains.

Chapter in AX	Chapter in CX	Methodological Comparison
6.2 – Secondary data	Chapter 6.2	CX permits secondary data when primary data is unavailable, prioritizing updated IPCC-aligned datasets; AX adopts this structure but requires more detailed documentation of data provenance, representativeness, and limitations to ensure transparency in aerospace supply chains. AX also gives a recommendation for secondary databases, based on IAEG LCA Aerospace Framework.
7.1 – Data model	Chapter 7.1	CX defines a standardized PCF data model for exchange, focused on minimum required elements for comparability across the automotive network. AX aligns structurally but expands the model to support full LCA data exchange and accommodates aerospace-specific elements such as confidentiality tagging and multi-tier traceability.
7.2 – Details on the required data elements	Chapter 7.2	Both specify key data fields such as time period, geography, and data quality to ensure consistency in PCF/LCA data exchange; AX retains the CX structure but adjusts interpretation of fields like temporal validity and data quality to reflect longer aerospace lifecycles and more fragmented supply chains. Crucially, AX mandates that the GWP total including biogenic CO ₂ uptake (T1) shall be used as the mandatory basis for calculating both the PDS and the DQR. Furthermore, AX aligns with the updated CX requirement that data recalculation is mandatory if the reported impacts increase by 10% or more based on the screening analysis.

Annex B – Additional guidance on classifying waste vs co-product

‘Deliberately produced’ means that the manufacturing process directly seeks to produce the material/component, i.e. is the result of a technical choice. ‘Further use is certain’ means that it is not a mere possibility but a certainty; in other words, it is guaranteed that the material will be used. This criterion may be indicated through, for example:

- Existence of contracts between the material producer and subsequent user.
- A financial gain for the material producer.
- A solid market (sound supply and demand) existing for this further use.
- Evidence that the material fulfils the same specifications as other products on the market.

‘Used directly without any further processing other than normal industrial practice’ means that if a production residue has to be treated before it can be used, this may indicate a waste treatment operation. Those treatment techniques that address typical waste-related characteristics of the production residue, such as its contamination with components which are hazardous or not useful, would prevent classification as non-waste. On the other hand, a treatment which is normal industrial practice, e.g. modification of size or shape by mechanical treatment, does not prevent the production residue from being regarded as a by-product.

‘Normal industrial practice’ can include all steps which a producer would take for a product, such as the material being filtered, washed, or dried; or adding materials necessary for further use; or carrying out quality control. However, treatments usually considered as a recovery operation cannot, in principle, be considered as normal industrial practice in this sense. Recovery operations are divided into three sub-categories: preparing for re-use, recycling, and other recovery.

‘Produced as an integral part of a production process’ means that the process where the co-product is generated has to be an integral part of a production process. Therefore, a material, which is made ready for further use through an integral part of a production process, can be regarded as a co-product. If a material leaves the site or factory where it is produced in order to undergo further processing, this may be evidence that such tasks are no longer part of the same production process, thus disqualifying it as a co-product.

‘Further use is lawful’ means that the further use of the material must be lawful, i.e. the substance or object fulfils all relevant product, environmental and health protection requirements at the national level for the specific use and will not lead to overall adverse environmental or human health impacts.

Reference for Annex B: “Guidance on the interpretation of key provisions of Directive 2008/98/EC on waste”¹³

¹³ European Commission (2012): Guidance on the interpretation of key provisions of Directive 2008/98/EC on waste. Link: [Guidance_on_waste_of_Directive_2008/98/EC.pdf](http://ec.europa.eu/environment/waste/directive/2008_98_ec.pdf)

Annex C – Imprint

Contributing partners

Airbus Operations GmbH

Advanced-Materials-Concepts GmbH (AMC)

Capgemini Engineering Deutschland SAS & Co KG

Diehl Aviation Laupheim GmbH

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V (IFAM, IPK, IPT)

Präwest – Präzisionswerkstätten Dr.-Ing. Heinz-Rudolf Jung GmbH & Co. KG

SupplyOn AG

Publisher

Aerospace-X

<https://www.aerospace-x.net>

info@aerospace-x.net

Airbus Operations GmbH

Kreetslag 10

21129 Hamburg